Skip to content
Snippets Groups Projects
Commit 22f0ebef authored by André Anjos's avatar André Anjos :speech_balloon:
Browse files

norminv tests are now passing

parent b29dd6af
No related branches found
No related tags found
No related merge requests found
......@@ -45,6 +45,7 @@ setup(
"xbob/math/histogram.cpp",
"xbob/math/linsolve.cpp",
"xbob/math/pavx.cpp",
"xbob/math/norminv.cpp",
"xbob/math/main.cpp",
],
packages = packages,
......
......@@ -16,6 +16,7 @@
#include "histogram.h"
#include "linsolve.h"
#include "pavx.h"
#include "norminv.h"
PyDoc_STRVAR(s_histogram_intersection_str, "histogram_intersection");
PyDoc_STRVAR(s_histogram_intersection_doc,
......@@ -239,6 +240,29 @@ The width and height arrays are returned. The width array is a 64-bit\n\
of the returned tuple) is a 64-bit **float** 1D array of the same size.\n\
");
PyDoc_STRVAR(s_norminv_str, "norminv");
PyDoc_STRVAR(s_norminv_doc,
"norminv(p, mu, sigma) -> scalar\n\
\n\
Computes the inverse normal cumulative distribution for a probability\n\
``p``, given a distribution with mean ``mu`` and standard deviation\n\
``sigma``. The value ``p`` must lie in the range [0,1].\n\
\n\
Reference: `<http://home.online.no/~pjacklam/notes/invnorm/>`_\n\
");
PyDoc_STRVAR(s_normsinv_str, "normsinv");
PyDoc_STRVAR(s_normsinv_doc,
"normsinv(p) -> scalar\n\
\n\
Computes the inverse normal cumulative distribution for a probability\n\
``p``, given a distribution with mean 0.0 and standard deviation 1.0.\n\
It is equivalent as calling :py:func:`norminv(p, 0, 1)`. The value\n\
``p`` must lie in the range [0,1].\n\
\n\
Reference: `<http://home.online.no/~pjacklam/notes/invnorm/>`_\n\
");
static PyMethodDef module_methods[] = {
{
s_histogram_intersection_str,
......@@ -318,6 +342,18 @@ static PyMethodDef module_methods[] = {
METH_VARARGS|METH_KEYWORDS,
s_pavx_width_height_doc
},
{
s_norminv_str,
(PyCFunction)py_norminv,
METH_VARARGS|METH_KEYWORDS,
s_norminv_doc
},
{
s_normsinv_str,
(PyCFunction)py_normsinv,
METH_VARARGS|METH_KEYWORDS,
s_normsinv_doc
},
{0} /* Sentinel */
};
......
......@@ -4,34 +4,59 @@
* @author Laurent El Shafey <Laurent.El-Shafey@idiap.ch>
*
* @brief Binds the inverse normal cumulative distribution into python
*
* Copyright (C) 2011-2013 Idiap Research Institute, Martigny, Switzerland
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <boost/python.hpp>
#include "pavx.h"
#include <xbob.blitz/cppapi.h>
#include <bob/math/norminv.h>
using namespace boost::python;
PyObject* py_norminv (PyObject*, PyObject* args, PyObject* kwds) {
/* Parses input arguments in a single shot */
static const char* const_kwlist[] = { "p", "mu", "sigma", 0 /* Sentinel */ };
static char** kwlist = const_cast<char**>(const_kwlist);
double p = 0.;
double mu = 0.;
double sigma = 0.;
static const char* NORMSINV_DOC = "Compute the inverse normal cumulative distribution for a probability p, given a distribution with zero mean and and unit variance.\nReference: http://home.online.no/~pjacklam/notes/invnorm/";
static const char* NORMINV_DOC = "Compute the inverse normal cumulative distribution for a probability p, given a distribution with mean mu and standard deviation sigma.\nReference: http://home.online.no/~pjacklam/notes/invnorm/";
if (!PyArg_ParseTupleAndKeywords(args, kwds, "ddd", kwlist, &p, &mu, &sigma))
return 0;
try {
return PyBlitzArrayCxx_FromCScalar(bob::math::norminv(p, mu, sigma));
}
catch (std::exception& e) {
PyErr_SetString(PyExc_RuntimeError, e.what());
}
catch (...) {
PyErr_SetString(PyExc_RuntimeError, "norminv failed: unknown exception caught");
}
return 0;
void bind_math_norminv()
{
def("normsinv", &bob::math::normsinv, (arg("p")), NORMSINV_DOC);
def("norminv", &bob::math::norminv, (arg("p"), arg("mu"), arg("sigma")), NORMINV_DOC);
}
PyObject* py_normsinv (PyObject*, PyObject* args, PyObject* kwds) {
/* Parses input arguments in a single shot */
static const char* const_kwlist[] = { "p", 0 /* Sentinel */ };
static char** kwlist = const_cast<char**>(const_kwlist);
double p = 0.;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "d", kwlist, &p)) return 0;
try {
return PyBlitzArrayCxx_FromCScalar(bob::math::normsinv(p));
}
catch (std::exception& e) {
PyErr_SetString(PyExc_RuntimeError, e.what());
}
catch (...) {
PyErr_SetString(PyExc_RuntimeError, "normsinv failed: unknown exception caught");
}
return 0;
}
/**
* @author Andre Anjos <andre.anjos@idiap.ch>
* @date Thu 5 Dec 12:01:57 2013
*
* @brief Declaration of components relevant for main.cpp
*/
#include <Python.h>
PyObject* py_norminv(PyObject*, PyObject* args, PyObject* kwds);
PyObject* py_normsinv(PyObject*, PyObject* args, PyObject* kwds);
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment