Skip to content
Snippets Groups Projects

Properly implemented resnet50 and resnet101

Merged Tiago de Freitas Pereira requested to merge resnet101 into master
@@ -10,10 +10,9 @@ This resnet 50 implementation provides a cleaner version
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.regularizers import l2
from tensorflow.keras.layers import Input, Conv2D, Activation, BatchNormalization
from tensorflow.keras.layers import MaxPooling2D, AveragePooling2D, Flatten, Dense
from tensorflow.keras.layers import Conv2D, Activation, BatchNormalization
from tensorflow.keras.layers import MaxPooling2D
global weight_decay
weight_decay = 1e-4
@@ -226,7 +225,7 @@ def resnet50_modified(input_tensor=None, input_shape=None, **kwargs):
if input_tensor is None:
input_tensor = tf.keras.Input(shape=input_shape)
else:
if not K.is_keras_tensor(input_tensor):
if not tf.keras.backend.is_keras_tensor(input_tensor):
input_tensor = tf.keras.Input(tensor=input_tensor, shape=input_shape)
bn_axis = 3
@@ -345,7 +344,7 @@ def resnet101_modified(input_tensor=None, input_shape=None, **kwargs):
if __name__ == "__main__":
input_tensor = tf.keras.layers.InputLayer([112, 112, 3])
model = resnet_50(input_tensor)
model = resnet50_modified(input_tensor)
print(len(model.variables))
print(model.summary())
Loading