Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.learn.pytorch
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
bob
bob.learn.pytorch
Merge requests
!6
autoencoders pretraining using RGB faces
代码
评审变更
检出分支
下载
补丁
文本差异
展开侧边栏
Merged
autoencoders pretraining using RGB faces
autoencoder_pretrain
into
master
Overview
18
Commits
17
Pipelines
17
Changes
16
Merged
autoencoders pretraining using RGB faces
Olegs NIKISINS
requested to merge
autoencoder_pretrain
into
master
Jan 21, 2019
Overview
9
Commits
17
Pipelines
17
Changes
16
Codes allowing to pre-train an autoencoder, using RGB facial images from the CelebA database.
Edited
Jan 22, 2019
by
Olegs NIKISINS
0
0
Merge request reports
Compare
master
version 16
5e44dfde
Jan 23, 2019
version 15
842c9bbd
Jan 23, 2019
version 14
18e00bbf
Jan 23, 2019
version 13
2da69255
Jan 23, 2019
version 12
61202ef7
Jan 23, 2019
version 11
1876beb7
Jan 22, 2019
version 10
181b2fff
Jan 22, 2019
version 9
eca9f56b
Jan 22, 2019
version 8
7762c4de
Jan 22, 2019
version 7
b2a8f933
Jan 22, 2019
version 6
89723900
Jan 22, 2019
version 5
06d5b2df
Jan 22, 2019
version 4
f979eb7d
Jan 21, 2019
version 3
720dd3ce
Jan 21, 2019
version 2
8f8b627f
Jan 21, 2019
version 1
29c02b8c
Jan 21, 2019
master (base)
and
latest version
latest version
7e723289
17 commits,
Jan 23, 2019
version 16
5e44dfde
16 commits,
Jan 23, 2019
version 15
842c9bbd
15 commits,
Jan 23, 2019
version 14
18e00bbf
14 commits,
Jan 23, 2019
version 13
2da69255
13 commits,
Jan 23, 2019
version 12
61202ef7
12 commits,
Jan 23, 2019
version 11
1876beb7
11 commits,
Jan 22, 2019
version 10
181b2fff
10 commits,
Jan 22, 2019
version 9
eca9f56b
9 commits,
Jan 22, 2019
version 8
7762c4de
8 commits,
Jan 22, 2019
version 7
b2a8f933
7 commits,
Jan 22, 2019
version 6
89723900
6 commits,
Jan 22, 2019
version 5
06d5b2df
5 commits,
Jan 22, 2019
version 4
f979eb7d
4 commits,
Jan 21, 2019
version 3
720dd3ce
3 commits,
Jan 21, 2019
version 2
8f8b627f
2 commits,
Jan 21, 2019
version 1
29c02b8c
1 commit,
Jan 21, 2019
16 files
+
1027
−
27
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
Files
16
bob/learn/pytorch/architectures/ConvAutoencoder.py
0 → 100644
+
49
−
0
View file @ 7e723289
Edit in single-file editor
Open in Web IDE
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
@author: Olegs Nikisins
"""
#==============================================================================
# Import here:
from
torch
import
nn
#==============================================================================
# Define the network:
class
ConvAutoencoder
(
nn
.
Module
):
def
__init__
(
self
):
super
(
ConvAutoencoder
,
self
).
__init__
()
self
.
encoder
=
nn
.
Sequential
(
nn
.
Conv2d
(
3
,
16
,
5
,
padding
=
2
),
nn
.
ReLU
(
True
),
nn
.
MaxPool2d
(
2
),
nn
.
Conv2d
(
16
,
16
,
5
,
padding
=
2
),
nn
.
ReLU
(
True
),
nn
.
MaxPool2d
(
2
),
nn
.
Conv2d
(
16
,
16
,
3
,
padding
=
2
),
nn
.
ReLU
(
True
),
nn
.
MaxPool2d
(
2
),
nn
.
Conv2d
(
16
,
16
,
3
,
padding
=
2
),
nn
.
ReLU
(
True
),
nn
.
MaxPool2d
(
2
))
self
.
decoder
=
nn
.
Sequential
(
nn
.
ConvTranspose2d
(
16
,
16
,
3
,
stride
=
2
,
padding
=
1
),
nn
.
ReLU
(
True
),
nn
.
ConvTranspose2d
(
16
,
16
,
3
,
stride
=
2
,
padding
=
1
),
nn
.
ReLU
(
True
),
nn
.
ConvTranspose2d
(
16
,
16
,
5
,
stride
=
2
,
padding
=
2
),
nn
.
ReLU
(
True
),
nn
.
ConvTranspose2d
(
16
,
3
,
5
,
stride
=
2
,
padding
=
2
),
nn
.
ReLU
(
True
),
nn
.
ConvTranspose2d
(
3
,
3
,
2
,
stride
=
1
,
padding
=
1
),
nn
.
Tanh
())
def
forward
(
self
,
x
):
"""
The forward method.
"""
x
=
self
.
encoder
(
x
)
x
=
self
.
decoder
(
x
)
return
x
Loading