Skip to content
Snippets Groups Projects

autoencoders pretraining using RGB faces

Merged Olegs NIKISINS requested to merge autoencoder_pretrain into master
Files
16
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
@author: Olegs Nikisins
"""
#==============================================================================
# Import here:
from torch import nn
#==============================================================================
# Define the network:
class ConvAutoencoder(nn.Module):
def __init__(self):
super(ConvAutoencoder, self).__init__()
self.encoder = nn.Sequential(nn.Conv2d(3, 16, 5, padding=2),
nn.ReLU(True),
nn.MaxPool2d(2),
nn.Conv2d(16, 16, 5, padding=2),
nn.ReLU(True),
nn.MaxPool2d(2),
nn.Conv2d(16, 16, 3, padding=2),
nn.ReLU(True),
nn.MaxPool2d(2),
nn.Conv2d(16, 16, 3, padding=2),
nn.ReLU(True),
nn.MaxPool2d(2))
self.decoder = nn.Sequential(nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1),
nn.ReLU(True),
nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1),
nn.ReLU(True),
nn.ConvTranspose2d(16, 16, 5, stride=2, padding=2),
nn.ReLU(True),
nn.ConvTranspose2d(16, 3, 5, stride=2, padding=2),
nn.ReLU(True),
nn.ConvTranspose2d(3, 3, 2, stride=1, padding=1),
nn.Tanh())
def forward(self, x):
"""
The forward method.
"""
x = self.encoder(x)
x = self.decoder(x)
return x
Loading