Skip to content
Snippets Groups Projects

Resolve "Add GANs"

Merged Guillaume HEUSCH requested to merge 4-add-gans into master
1 file
+ 50
1
Compare changes
  • Side-by-side
  • Inline
@@ -32,6 +32,21 @@ def test_architectures():
output, emdedding = net.forward(t)
assert output.shape == torch.Size([1, 20])
assert emdedding.shape == torch.Size([1, 512])
# DCGAN
d = numpy.random.rand(1, 3, 64, 64).astype("float32")
t = torch.from_numpy(d)
from ..architectures import DCGAN_discriminator
discriminator = DCGAN_discriminator(1)
output = discriminator.forward(t)
assert output.shape == torch.Size([1])
g = numpy.random.rand(1, 100, 1, 1).astype("float32")
t = torch.from_numpy(g)
from ..architectures import DCGAN_generator
generator = DCGAN_generator(1)
output = generator.forward(t)
assert output.shape == torch.Size([1, 3, 64, 64])
def test_transforms():
@@ -85,7 +100,7 @@ class DummyDataSet(Dataset):
return sample
def test_trainer():
def test_CNNtrainer():
from ..architectures import CNN8
net = CNN8(20)
@@ -100,3 +115,37 @@ def test_trainer():
assert os.path.isfile('model_1_0.pth')
os.remove('model_1_0.pth')
class DummyDataSetGAN(Dataset):
def __init__(self):
pass
def __len__(self):
return 100
def __getitem__(self, idx):
data = numpy.random.rand(3, 64, 64).astype("float32")
sample = {'image': torch.from_numpy(data)}
return sample
def test_DCGANtrainer():
from ..architectures import DCGAN_generator
from ..architectures import DCGAN_discriminator
g = DCGAN_generator(1)
d = DCGAN_discriminator(1)
dataloader = torch.utils.data.DataLoader(DummyDataSetGAN(), batch_size=32, shuffle=True)
from ..trainers import DCGANTrainer
trainer = DCGANTrainer(g, d, batch_size=32, noise_dim=100, use_gpu=False, verbosity_level=2)
trainer.train(dataloader, n_epochs=1, output_dir='.')
import os
assert os.path.isfile('fake_samples_epoch_000.png')
assert os.path.isfile('netD_epoch_0.pth')
assert os.path.isfile('netG_epoch_0.pth')
os.remove('fake_samples_epoch_000.png')
os.remove('netD_epoch_0.pth')
os.remove('netG_epoch_0.pth')
Loading