Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.learn.pytorch
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
bob
bob.learn.pytorch
Commits
f58f449f
Commit
f58f449f
authored
7 years ago
by
Guillaume HEUSCH
Browse files
Options
Downloads
Patches
Plain Diff
[trainers] added some comments, and plotting/saving generated images during training
parent
626a68a9
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
bob/learn/pytorch/trainers/DRGANTrainer.py
+80
-34
80 additions, 34 deletions
bob/learn/pytorch/trainers/DRGANTrainer.py
with
80 additions
and
34 deletions
bob/learn/pytorch/trainers/DRGANTrainer.py
+
80
−
34
View file @
f58f449f
...
...
@@ -13,6 +13,9 @@ import torchvision.utils as vutils
import
bob.core
logger
=
bob
.
core
.
log
.
setup
(
"
bob.learn.pytorch
"
)
import
bob.io.base
import
bob.io.image
class
DRGANTrainer
(
object
):
"""
Class to train a DR-GAN
...
...
@@ -88,7 +91,7 @@ class DRGANTrainer(object):
self
.
criterion_id
.
cuda
()
def
train
(
self
,
dataloader
,
n_epochs
=
10
,
learning_rate
=
0.0002
,
beta1
=
0.5
,
output_dir
=
'
out
'
):
def
train
(
self
,
dataloader
,
n_epochs
=
10
,
learning_rate
=
0.0002
,
beta1
=
0.5
,
output_dir
=
'
out
'
,
plot
=
False
):
"""
Function that performs the training.
...
...
@@ -108,7 +111,11 @@ class DRGANTrainer(object):
output_dir: path
The directory where you would like to output images and models
plot: boolean
If you want to plot some images during the training process (debug)
"""
# labels for real/fake
real_label
=
1
fake_label
=
0
...
...
@@ -117,72 +124,89 @@ class DRGANTrainer(object):
optimizerD
=
optim
.
Adam
(
self
.
discriminator
.
parameters
(),
lr
=
learning_rate
,
betas
=
(
beta1
,
0.999
))
optimizerG
=
optim
.
Adam
(
generator_params
,
lr
=
learning_rate
,
betas
=
(
beta1
,
0.999
))
# get fixed image, fixed noise and conditional pose for sampling
print
"
number of images = {}
"
.
format
(
len
(
dataloader
.
dataset
))
# be sure to have a fixed frontal image to sample from
pose
=
0
counter
=
0
while
pose
!=
6
:
pose
=
dataloader
.
dataset
[
counter
][
'
pose
'
]
fixed_index
=
counter
counter
+=
1
fixed_image
=
dataloader
.
dataset
[
counter
][
'
image
'
]
vutils
.
save_image
(
fixed_image
,
'
%s/fixed_id.png
'
%
(
output_dir
),
normalize
=
True
)
#fixed_id = dataloader.dataset[counter]['id']
#fixed_pose = dataloader.dataset[counter]['pose']
#from matplotlib import pyplot
#pyplot.title("ID -> {}, pose {}".format(fixed_id, fixed_pose))
#pyplot.imshow(numpy.rollaxis(numpy.rollaxis(fixed_image.numpy(), 2),2))
#pyplot.show()
# plot the image if asked for
if
plot
:
fixed_id
=
dataloader
.
dataset
[
counter
][
'
id
'
]
fixed_pose
=
dataloader
.
dataset
[
counter
][
'
pose
'
]
from
matplotlib
import
pyplot
pyplot
.
title
(
"
ID -> {}, pose {}
"
.
format
(
fixed_id
,
fixed_pose
))
pyplot
.
imshow
(
numpy
.
rollaxis
(
numpy
.
rollaxis
(
fixed_image
.
numpy
(),
2
),
2
))
pyplot
.
show
()
# expand the fixed image, so that to have a batch for all possible poses
fixed_image
=
fixed_image
.
expand
(
self
.
conditional_dim
,
self
.
image_size
[
0
],
self
.
image_size
[
1
],
self
.
image_size
[
2
])
fixed_image
=
Variable
(
fixed_image
)
# the noise to sample from
fixed_noise
=
torch
.
FloatTensor
(
self
.
conditional_dim
,
self
.
noise_dim
,
1
,
1
).
normal_
(
0
,
1
)
fixed_noise
=
Variable
(
fixed_noise
)
# build the set of one-hot encoded pose to sample from
fixed_one_hot
=
torch
.
FloatTensor
(
self
.
conditional_dim
,
self
.
conditional_dim
,
1
,
1
).
zero_
()
for
k
in
range
(
self
.
conditional_dim
):
fixed_one_hot
[
k
,
k
]
=
1
fixed_one_hot
=
Variable
(
fixed_one_hot
)
# number of ids in the database
number_of_ids
=
self
.
discriminator
.
number_of_ids
# save minibatch of generated fake images every X iterations
save_generated_minibatch
=
1
# ================
# === LET'S GO ===
# ================
for
epoch
in
range
(
n_epochs
):
for
i
,
data
in
enumerate
(
dataloader
,
0
):
start
=
time
.
time
()
# get the data
and
pose labels
# get the data
,
pose
and id
labels
real_images
=
data
[
'
image
'
]
poses
=
data
[
'
pose
'
]
ids
=
data
[
'
id
'
]
if
max
(
ids
)
>=
number_of_ids
:
logger
.
error
(
"
Something is wrong here: I have an ID with index {}, and the number of IDs is {}
"
.
format
(
max
(
ids
),
number_of_ids
))
import
sys
sys
.
exit
()
# WARNING: the last batch could be smaller than the provided size
# WARNING: the last batch could be smaller than the provided size
# (you could avoid that by setting the drop_last flag to True in dataloader constructor)
batch_size
=
len
(
real_images
)
#
create the Tensors with the right batch size
#
get a minibatch of noise
noise
=
torch
.
FloatTensor
(
batch_size
,
self
.
noise_dim
,
1
,
1
).
normal_
(
0
,
1
)
label_gan
=
torch
.
FloatTensor
(
batch_size
)
# create the one hot conditional vector on pose (decoder)
one_hot_vector
=
torch
.
FloatTensor
(
batch_size
,
self
.
conditional_dim
,
1
,
1
).
zero_
()
for
k
in
range
(
batch_size
):
one_hot_vector
[
k
,
poses
[
k
]]
=
1
# label for fake/real
label_gan
=
torch
.
FloatTensor
(
batch_size
)
# move stuff to GPU if needed
if
self
.
use_gpu
:
# inputs
real_images
=
real_images
.
cuda
()
noise
=
noise
.
cuda
()
one_hot_vector
=
one_hot_vector
.
cuda
()
#labels
label_gan
=
label_gan
.
cuda
()
poses
=
poses
.
cuda
()
ids
=
ids
.
cuda
()
noise
=
noise
.
cuda
()
one_hot_vector
=
one_hot_vector
.
cuda
()
# =============
# DISCRIMINATOR
...
...
@@ -212,19 +236,8 @@ class DRGANTrainer(object):
# === FAKE DATA ===
noisev
=
Variable
(
noise
)
one_hot_vv
=
Variable
(
one_hot_vector
)
# encode the identity
encoded_ids
=
self
.
encoder
(
imagev
)
fake
=
self
.
decoder
(
noisev
,
one_hot_vv
,
encoded_ids
)
if
(
i
%
10
)
==
0
:
vutils
.
save_image
(
fake
.
data
,
'
%s/generated_images_epoch_%03d_minibatch_%03d.png
'
%
(
output_dir
,
epoch
,
i
),
normalize
=
True
)
#from matplotlib import pyplot
#for k in range(batch_size):
# pyplot.title("ID -> {}, pose {}".format(ids[k], poses[k]))
# pyplot.imshow(numpy.rollaxis(numpy.rollaxis(fake[k].data.numpy(), 2),2))
# pyplot.show()
label_gan_v
=
Variable
(
label_gan
.
fill_
(
fake_label
))
output_fake
=
self
.
discriminator
(
fake
)
...
...
@@ -243,6 +256,40 @@ class DRGANTrainer(object):
# perform optimization (i.e. update discriminator parameters)
errD
=
errD_real_id
+
errD_real_pose
+
(
errD_real_gan
+
errD_fake_gan
)
optimizerD
.
step
()
# +++++ Save generated images during training +++++
if
((
i
%
save_generated_minibatch
)
==
0
)
and
(
i
>
0
):
# get a random example in this minibatch
index
=
numpy
.
random
.
randint
(
0
,
batch_size
)
logger
.
info
(
"
Saving example {} in this batch (epoch {} - iteration {})
"
.
format
(
index
,
epoch
,
i
))
# move stuff back to CPU (needed to use numpy())
real_images
=
real_images
.
cpu
()
fake
=
fake
.
cpu
()
real_example
=
(
real_images
[
index
].
numpy
()
+
1
)
/
2.
generated_example
=
(
fake
[
index
].
data
.
numpy
()
+
1
)
/
2.
id_example
=
ids
[
index
]
pose_example
=
poses
[
index
]
# create a figure with both the real example and the generated one
if
plot
:
from
matplotlib
import
pyplot
fig
,
axarr
=
pyplot
.
subplots
(
1
,
2
)
fig
.
suptitle
(
"
ID = {}, pose = {}
"
.
format
(
id_example
,
pose_example
))
axarr
[
0
].
imshow
(
numpy
.
rollaxis
(
numpy
.
rollaxis
(
real_example
,
2
),
2
))
axarr
[
1
].
imshow
(
numpy
.
rollaxis
(
numpy
.
rollaxis
(
generated_example
,
2
),
2
))
pyplot
.
show
()
image_to_be_saved
=
numpy
.
ones
((
self
.
image_size
[
0
],
self
.
image_size
[
1
],
self
.
image_size
[
2
]
*
2
))
image_to_be_saved
[:,
:
self
.
image_size
[
1
],
:
self
.
image_size
[
2
]]
=
real_example
image_to_be_saved
[:,
:
self
.
image_size
[
1
],
self
.
image_size
[
2
]:
self
.
image_size
[
2
]
*
2
]
=
generated_example
bob
.
io
.
base
.
save
((
image_to_be_saved
*
255.
).
astype
(
'
uint8
'
),
output_dir
+
'
/generated_sample_{}_{}.png
'
.
format
(
epoch
,
i
))
if
self
.
use_gpu
:
fake
=
fake
.
cuda
()
#vutils.save_image(fake.data, '%s/generated_images_epoch_%03d_minibatch_%03d.png' % (output_dir, epoch, i), normalize=True)
# =========
# GENERATOR
...
...
@@ -280,8 +327,7 @@ class DRGANTrainer(object):
self
.
encoder
=
self
.
encoder
.
cpu
()
self
.
decoder
=
self
.
decoder
.
cpu
()
fixed_imagev
=
Variable
(
fixed_image
)
fixed_encoded_id
=
self
.
encoder
(
fixed_imagev
)
fixed_encoded_id
=
self
.
encoder
(
fixed_image
)
fake_examples
=
self
.
decoder
(
fixed_noise
,
fixed_one_hot
,
fixed_encoded_id
)
vutils
.
save_image
(
fake_examples
.
data
,
'
%s/fake_samples_epoch_%03d.png
'
%
(
output_dir
,
epoch
),
normalize
=
True
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment