Skip to content
Snippets Groups Projects
Commit 9ecb84d7 authored by Guillaume HEUSCH's avatar Guillaume HEUSCH
Browse files

[architecture] fixed dimension and cuda issues in the original DR-GAN architecture

parent 5db8116f
No related branches found
No related tags found
No related merge requests found
......@@ -322,12 +322,13 @@ class DRGANOriginal_discriminator(nn.Module):
nn.BatchNorm2d(latent_dim),
# ------------------------------------------
# --- average pool
# input is (latent_dim)x6x6, output is latent_dimx1x1
nn.AvgPool2d(6, stride=1),
)
# --- fully connected
#nn.Linear(320, (number_of_ids + conditional_dim + 1))
self.classifier = nn.Sequential(
nn.Linear(self.latent_dim, (self.number_of_ids + self.conditional_dim + 1)),
nn.Sigmoid()
)
......@@ -339,17 +340,14 @@ class DRGANOriginal_discriminator(nn.Module):
x: pyTorch Variable
The minibatch of images to process.
"""
"""
if isinstance(x.data, torch.cuda.FloatTensor) and self.ngpu > 1:
output_avgpool = nn.parallel.data_parallel(self.main, x, range(self.ngpu))
output_avgpool = output_avgpool.squeeze()
output = nn.parallel.data_parallel(self.classifier, output_avgpool, range(self.ngpu))
else:
output_avgpool = self.main(x)
input_linear = output_avgpool.squeeze()
classifier = nn.Sequential(
nn.Linear(self.latent_dim, (self.number_of_ids + self.conditional_dim + 1)),
nn.Sigmoid()
)
output = classifier(input_linear)
output_avgpool = output_avgpool.squeeze()
output = self.classifier(output_avgpool)
return output
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment