Skip to content
Snippets Groups Projects
Commit 56606a67 authored by Guillaume HEUSCH's avatar Guillaume HEUSCH
Browse files

[script] first version a the full train script, achieving some results

parent 1606385f
No related branches found
No related tags found
No related merge requests found
...@@ -13,7 +13,7 @@ Options: ...@@ -13,7 +13,7 @@ Options:
-h, --help Show this screen. -h, --help Show this screen.
-V, --version Show version. -V, --version Show version.
-l, --latent-dim=<int> the dimension of the encoded ID [default: 320] -l, --latent-dim=<int> the dimension of the encoded ID [default: 320]
-b, --batch-size=<int> The size of your mini-batch [default: 128] -b, --batch-size=<int> The size of your mini-batch [default: 64]
-e, --epochs=<int> The number of training epochs [default: 100] -e, --epochs=<int> The number of training epochs [default: 100]
-s, --sample=<int> Save generated images at every 'sample' batch iteration [default: 100000000000] -s, --sample=<int> Save generated images at every 'sample' batch iteration [default: 100000000000]
-o, --output-dir=<path> Dir to save the logs, models and images [default: ./drgan-light-mpie-casia/] -o, --output-dir=<path> Dir to save the logs, models and images [default: ./drgan-light-mpie-casia/]
...@@ -40,9 +40,21 @@ from docopt import docopt ...@@ -40,9 +40,21 @@ from docopt import docopt
version = pkg_resources.require('bob.learn.pytorch')[0].version version = pkg_resources.require('bob.learn.pytorch')[0].version
import numpy import numpy
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
from bob.learn.pytorch.datasets.multipie import MultiPIEDataset from bob.learn.pytorch.datasets.multipie import MultiPIEDataset
#import bob.learn.pytorch.datasets.multipie from bob.learn.pytorch.datasets.multipie import RollChannels
from bob.learn.pytorch.architectures.DCGAN import _netG
from bob.learn.pytorch.architectures.DCGAN import _netD
from bob.learn.pytorch.architectures.DCGAN import weights_init
def main(user_input=None): def main(user_input=None):
...@@ -70,15 +82,119 @@ def main(user_input=None): ...@@ -70,15 +82,119 @@ def main(user_input=None):
log_dir = os.path.join(output_dir, 'logs') log_dir = os.path.join(output_dir, 'logs')
model_dir = os.path.join(output_dir, 'models') model_dir = os.path.join(output_dir, 'models')
#face_dataset = MultiPIEDataset(root_dir='/idiap/resource/database/Multi-Pie/data/') try:
face_dataset = MultiPIEDataset(root_dir='/idiap/temp/heusch/data/multipie-cropped-64x64') os.makedirs(output_dir)
#print len(face_dataset) except OSError:
pass
from matplotlib import pyplot
for i in range(len(face_dataset)):
sample = face_dataset[i] # data
pyplot.title('Sample {}: ID -> {}, pose ->{}'.format(i, sample['id'], sample['pose'])) # WARNING with the transforms ... act on labels too, at some point, I may have to write my own
pyplot.imshow(numpy.rollaxis(numpy.rollaxis(sample['image'], 2),2)) # Also, in 'ToTensor', there is a reshape performed from: HxWxC to CxHxW
pyplot.show() face_dataset = MultiPIEDataset(root_dir='/idiap/temp/heusch/data/multipie-cropped-64x64', frontal_only=True,
transform=transforms.Compose([RollChannels(), transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]))
logger.info("There are {} training images".format(len(face_dataset)))
dataloader = torch.utils.data.DataLoader(face_dataset, batch_size=batch_size, shuffle=True)
#from matplotlib import pyplot
#for i in range(len(face_dataset)):
# sample = face_dataset[i]
# pyplot.title('Sample {}: ID -> {}, pose ->{}'.format(i, sample['id'], sample['pose']))
# pyplot.imshow(sample['image'])
# #pyplot.imshow(numpy.rollaxis(numpy.rollaxis(sample['image'], 2),2))
# pyplot.show()
# network
ngpu = 1
netG = _netG(ngpu)
netG.apply(weights_init)
print(netG)
netD = _netD(ngpu)
netD.apply(weights_init)
print(netD)
criterion = nn.BCELoss()
nz = 100
input = torch.FloatTensor(batch_size, 3, 64, 64)
noise = torch.FloatTensor(batch_size, nz, 1, 1)
fixed_noise = torch.FloatTensor(batch_size, nz, 1, 1).normal_(0, 1)
label = torch.FloatTensor(batch_size)
real_label = 1
fake_label = 0
fixed_noise = Variable(fixed_noise)
# setup optimizer
lr = 0.0002
beta1 = 0.5
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))
niter = 10
for epoch in range(niter):
for i, data in enumerate(dataloader, 0):
#print data
#print len(data)
############################
# (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
###########################
# train with real
netD.zero_grad()
real_cpu = data
#print (type(real_cpu))
#print (real_cpu)
batch_size = real_cpu.size(0)
input.resize_as_(real_cpu).copy_(real_cpu)
label.resize_(batch_size).fill_(real_label)
inputv = Variable(input)
labelv = Variable(label)
output = netD(inputv)
errD_real = criterion(output, labelv)
errD_real.backward()
D_x = output.data.mean()
# train with fake
noise.resize_(batch_size, nz, 1, 1).normal_(0, 1)
noisev = Variable(noise)
fake = netG(noisev)
labelv = Variable(label.fill_(fake_label))
output = netD(fake.detach())
errD_fake = criterion(output, labelv)
errD_fake.backward()
D_G_z1 = output.data.mean()
errD = errD_real + errD_fake
optimizerD.step()
############################
# (2) Update G network: maximize log(D(G(z)))
###########################
netG.zero_grad()
labelv = Variable(label.fill_(real_label)) # fake labels are real for generator cost
output = netD(fake)
errG = criterion(output, labelv)
errG.backward()
D_G_z2 = output.data.mean()
optimizerG.step()
print'[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)): %.4f / %.4f' % (epoch, niter, i, len(dataloader), errD.data[0], errG.data[0], D_x, D_G_z1, D_G_z2)
if i % 100 == 0:
vutils.save_image(real_cpu,
'%s/real_samples.png' % output_dir,
normalize=True)
fake = netG(fixed_noise)
vutils.save_image(fake.data,
'%s/fake_samples_epoch_%03d.png' % (output_dir, epoch),
normalize=True)
# do checkpointing
torch.save(netG.state_dict(), '%s/netG_epoch_%d.pth' % (output_dir, epoch))
torch.save(netD.state_dict(), '%s/netD_epoch_%d.pth' % (output_dir, epoch))
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment