Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.learn.pytorch
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
bob
bob.learn.pytorch
Commits
0fa39946
Commit
0fa39946
authored
7 years ago
by
Guillaume HEUSCH
Browse files
Options
Downloads
Patches
Plain Diff
[script] added script to train DR-GAN (original and light version) on both Multi-PIE and CASIA
parent
b6c9164b
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
bob/learn/pytorch/scripts/train_drgan_mpie_casia.py
+178
-0
178 additions, 0 deletions
bob/learn/pytorch/scripts/train_drgan_mpie_casia.py
setup.py
+1
-0
1 addition, 0 deletions
setup.py
with
179 additions
and
0 deletions
bob/learn/pytorch/scripts/train_drgan_mpie_casia.py
0 → 100644
+
178
−
0
View file @
0fa39946
#!/usr/bin/env python
# encoding: utf-8
"""
Train a DR-GAN
Usage:
%(prog)s [--latent-dim=<int>] [--noise-dim=<int>] [--conditional-dim=<int>]
[--batch-size=<int>] [--epochs=<int>] [--sample=<int>] [--light]
[--output-dir=<path>] [--use-gpu] [--seed=<int>] [--verbose ...] [--plot]
Options:
-h, --help Show this screen.
-V, --version Show version.
-l, --latent-dim=<int> the dimension of the encoded ID [default: 320]
-n, --noise-dim=<int> the dimension of the noise [default: 50]
-c, --conditional-dim=<int> the dimension of the conditioning variable [default: 13]
-b, --batch-size=<int> The size of your mini-batch [default: 64]
-e, --epochs=<int> The number of training epochs [default: 100]
-s, --sample=<int> Save generated images at every
'
sample
'
batch iteration [default: 100000000000]
-L, --light Use a lighter architecture (similar as DCGAN)
-o, --output-dir=<path> Dir to save the logs, models and images [default: ./drgan-light-mpie-casia/]
-g, --use-gpu Use the GPU
-S, --seed=<int> The random seed [default: 3]
-v, --verbose Increase the verbosity (may appear multiple times).
-P, --plot Show some image during training process (mainly for debug)
Example:
To run the training process
$ %(prog)s --batch-size 64 --epochs 25 --output-dir drgan
See
'
%(prog)s --help
'
for more information.
"""
import
os
,
sys
import
pkg_resources
import
bob.core
logger
=
bob
.
core
.
log
.
setup
(
"
bob.learn.pytorch
"
)
from
docopt
import
docopt
version
=
pkg_resources
.
require
(
'
bob.learn.pytorch
'
)[
0
].
version
import
numpy
import
bob.io.base
# torch
import
torch
import
torch.nn
as
nn
import
torch.optim
as
optim
import
torchvision.transforms
as
transforms
import
torchvision.utils
as
vutils
from
torch.autograd
import
Variable
# data and architecture from the package
from
bob.learn.pytorch.datasets
import
MultiPIEDataset
from
bob.learn.pytorch.datasets
import
CasiaDataset
from
torch.utils.data
import
ConcatDataset
from
bob.learn.pytorch.datasets
import
RollChannels
from
bob.learn.pytorch.datasets
import
ToTensor
from
bob.learn.pytorch.datasets
import
Normalize
from
bob.learn.pytorch.architectures
import
weights_init
from
bob.learn.pytorch.trainers
import
DRGANTrainer
def
main
(
user_input
=
None
):
# Parse the command-line arguments
if
user_input
is
not
None
:
arguments
=
user_input
else
:
arguments
=
sys
.
argv
[
1
:]
prog
=
os
.
path
.
basename
(
sys
.
argv
[
0
])
completions
=
dict
(
prog
=
prog
,
version
=
version
,)
args
=
docopt
(
__doc__
%
completions
,
argv
=
arguments
,
version
=
'
Train DR-GAN (%s)
'
%
version
,)
# verbosity
verbosity_level
=
args
[
'
--verbose
'
]
bob
.
core
.
log
.
set_verbosity_level
(
logger
,
verbosity_level
)
# get the arguments
noise_dim
=
int
(
args
[
'
--noise-dim
'
])
latent_dim
=
int
(
args
[
'
--latent-dim
'
])
conditional_dim
=
int
(
args
[
'
--conditional-dim
'
])
batch_size
=
int
(
args
[
'
--batch-size
'
])
epochs
=
int
(
args
[
'
--epochs
'
])
sample
=
int
(
args
[
'
--sample
'
])
output_dir
=
str
(
args
[
'
--output-dir
'
])
seed
=
int
(
args
[
'
--seed
'
])
use_gpu
=
bool
(
args
[
'
--use-gpu
'
])
plot
=
bool
(
args
[
'
--plot
'
])
if
bool
(
args
[
'
--light
'
]):
from
bob.learn.pytorch.architectures
import
DRGAN_encoder
as
drgan_encoder
from
bob.learn.pytorch.architectures
import
DRGAN_decoder
as
drgan_decoder
from
bob.learn.pytorch.architectures
import
DRGAN_discriminator
as
drgan_discriminator
multipie_root_dir
=
'
/idiap/temp/heusch/data/multipie-cropped-64x64
'
casia_root_dir
=
'
/idiap/temp/heusch/data/casia-webface-cropped-64x64-pose-clusters/
'
else
:
from
bob.learn.pytorch.architectures
import
DRGANOriginal_encoder
as
drgan_encoder
from
bob.learn.pytorch.architectures
import
DRGANOriginal_decoder
as
drgan_decoder
from
bob.learn.pytorch.architectures
import
DRGANOriginal_discriminator
as
drgan_discriminator
multipie_root_dir
=
'
/idiap/temp/heusch/data/multipie-cropped-96x96/
'
casia_root_dir
=
'
/idiap/temp/heusch/data/casia-webface-96x96-cluster-color/
'
# process on the arguments / options
torch
.
manual_seed
(
seed
)
if
use_gpu
:
torch
.
cuda
.
manual_seed_all
(
seed
)
if
torch
.
cuda
.
is_available
()
and
not
use_gpu
:
logger
.
warn
(
"
You have a CUDA device, so you should probably run with --use-gpu
"
)
bob
.
io
.
base
.
create_directories_safe
(
output_dir
)
# ============
# === DATA ===
# ============
data_transform
=
transforms
.
Compose
([
RollChannels
(),
ToTensor
(),
Normalize
((
0.5
,
0.5
,
0.5
),
(
0.5
,
0.5
,
0.5
))])
# Multi-PIE
face_dataset_1
=
MultiPIEDataset
(
root_dir
=
multipie_root_dir
,
transform
=
data_transform
)
# get the number of ids
number_of_ids
=
numpy
.
max
(
face_dataset_1
.
id_labels
)
+
1
logger
.
info
(
"
There are {} images from {} different identities in Multi-PIE
"
.
format
(
len
(
face_dataset_1
),
number_of_ids
))
# CASIA Webface
face_dataset_2
=
CasiaDataset
(
root_dir
=
casia_root_dir
,
transform
=
data_transform
)
min_index_casia
=
numpy
.
min
(
face_dataset_2
.
id_labels
)
max_index_casia
=
numpy
.
max
(
face_dataset_2
.
id_labels
)
logger
.
info
(
"
There are {} images from {} different identities in CASIA Webface
"
.
format
(
len
(
face_dataset_2
),
(
max_index_casia
-
min_index_casia
)))
# Total
number_of_ids
=
max_index_casia
+
1
face_dataset
=
ConcatDataset
([
face_dataset_1
,
face_dataset_2
])
logger
.
info
(
"
There are {} images from {} different identities in TOTAL
"
.
format
(
len
(
face_dataset
),
number_of_ids
))
# DataLoader
dataloader
=
torch
.
utils
.
data
.
DataLoader
(
face_dataset
,
batch_size
=
batch_size
,
shuffle
=
True
)
# get the image size
image_size
=
face_dataset
[
0
][
'
image
'
].
numpy
().
shape
# ===============
# === NETWORK ===
# ===============
encoder
=
drgan_encoder
(
image_size
,
latent_dim
)
encoder
.
apply
(
weights_init
)
logger
.
info
(
"
Encoder architecture: {}
"
.
format
(
encoder
))
decoder
=
drgan_decoder
(
image_size
,
noise_dim
,
latent_dim
,
conditional_dim
)
decoder
.
apply
(
weights_init
)
logger
.
info
(
"
Generator architecture: {}
"
.
format
(
decoder
))
discriminator
=
drgan_discriminator
(
image_size
,
number_of_ids
,
conditional_dim
)
discriminator
.
apply
(
weights_init
)
logger
.
info
(
"
Discriminator architecture: {}
"
.
format
(
discriminator
))
# ===============
# === TRAINER ===
# ===============
trainer
=
DRGANTrainer
(
encoder
,
decoder
,
discriminator
,
image_size
,
batch_size
=
batch_size
,
noise_dim
=
noise_dim
,
conditional_dim
=
conditional_dim
,
latent_dim
=
latent_dim
,
use_gpu
=
use_gpu
,
verbosity_level
=
verbosity_level
)
trainer
.
train
(
dataloader
,
n_epochs
=
epochs
,
output_dir
=
output_dir
,
plot
=
plot
)
This diff is collapsed.
Click to expand it.
setup.py
+
1
−
0
View file @
0fa39946
...
...
@@ -78,6 +78,7 @@ setup(
'
train_conditionalgan_casia.py = bob.learn.pytorch.scripts.train_conditionalgan_casia:main
'
,
'
train_wcgan_multipie.py = bob.learn.pytorch.scripts.train_wcgan_multipie:main
'
,
'
train_drgan_multipie.py = bob.learn.pytorch.scripts.train_drgan_multipie:main
'
,
'
train_drgan_mpie_casia.py = bob.learn.pytorch.scripts.train_drgan_mpie_casia:main
'
,
'
read_training_hdf5.py = bob.learn.pytorch.scripts.read_training_hdf5:main
'
,
],
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment