Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.learn.em
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
bob
bob.learn.em
Merge requests
!74
Set the factor analysis score functions to always return a float
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
Set the factor analysis score functions to always return a float
fix-fa
into
master
Overview
0
Commits
2
Pipelines
2
Changes
1
Merged
Yannick DAYER
requested to merge
fix-fa
into
master
2 years ago
Overview
0
Commits
2
Pipelines
2
Changes
1
Expand
0
0
Merge request reports
Viewing commit
5b470c23
Prev
Next
Show latest version
1 file
+
4
−
4
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
5b470c23
[doc] Update the doctests to expect a float score.
· 5b470c23
Yannick DAYER
authored
2 years ago
doc/guide.rst
+
4
−
4
Options
@@ -346,8 +346,8 @@ The snippet bellow shows how to:
>>> # Probing
>>> probe_data = np.array([[1.2, 0.1, 1.4], [0.5, 0.2, 0.3]])
>>> score = isv_machine.score_using_array(model, probe_data)
>>> print(score)
[
2.754
]
>>> print(
round(
score
, 3)
)
2.754
@@ -407,8 +407,8 @@ such session variability model.
>>> probe_data = np.array([[1.2, 0.1, 1.4], [0.5, 0.2, 0.3]])
>>> score = jfa_machine.score_using_array(model, probe_data)
>>> print(score)
[
0.471
]
>>> print(
round(
score
, 3)
)
0.471
Loading