Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.learn.em
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
bob
bob.learn.em
Commits
761414be
Commit
761414be
authored
3 years ago
by
Amir MOHAMMADI
Browse files
Options
Downloads
Patches
Plain Diff
[factor_analysis] make sure state changes work through dask as well
parent
5f49f8e2
Branches
Branches containing commit
No related tags found
1 merge request
!53
Factor Analysis on pure python
Pipeline
#60443
failed
3 years ago
Stage: build
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
bob/learn/em/factor_analysis.py
+9
-6
9 additions, 6 deletions
bob/learn/em/factor_analysis.py
bob/learn/em/test/test_factor_analysis.py
+2
-2
2 additions, 2 deletions
bob/learn/em/test/test_factor_analysis.py
with
11 additions
and
8 deletions
bob/learn/em/factor_analysis.py
+
9
−
6
View file @
761414be
...
@@ -571,6 +571,7 @@ class FactorAnalysisBase(BaseEstimator):
...
@@ -571,6 +571,7 @@ class FactorAnalysisBase(BaseEstimator):
self
.
_U
=
U_c
.
reshape
(
self
.
_U
=
U_c
.
reshape
(
self
.
ubm
.
n_gaussians
*
self
.
feature_dimension
,
self
.
r_U
self
.
ubm
.
n_gaussians
*
self
.
feature_dimension
,
self
.
r_U
)
)
return
self
.
_U
def
_compute_uprod
(
self
):
def
_compute_uprod
(
self
):
"""
"""
...
@@ -1403,7 +1404,7 @@ class ISVMachine(FactorAnalysisBase):
...
@@ -1403,7 +1404,7 @@ class ISVMachine(FactorAnalysisBase):
acc_U_A2
=
[
acc
[
1
]
for
acc
in
acc_U_A1_acc_U_A2_list
]
acc_U_A2
=
[
acc
[
1
]
for
acc
in
acc_U_A1_acc_U_A2_list
]
acc_U_A2
=
reduce_iadd
(
acc_U_A2
)
acc_U_A2
=
reduce_iadd
(
acc_U_A2
)
self
.
update_U
(
acc_U_A1
,
acc_U_A2
)
return
self
.
update_U
(
acc_U_A1
,
acc_U_A2
)
def
fit_using_stats
(
self
,
X
,
y
):
def
fit_using_stats
(
self
,
X
,
y
):
"""
"""
...
@@ -1444,7 +1445,7 @@ class ISVMachine(FactorAnalysisBase):
...
@@ -1444,7 +1445,7 @@ class ISVMachine(FactorAnalysisBase):
for
xx
,
yy
in
zip
(
X
,
y
)
for
xx
,
yy
in
zip
(
X
,
y
)
]
]
delayed_em_step
=
dask
.
delayed
(
self
.
m_step
)(
e_step_output
)
delayed_em_step
=
dask
.
delayed
(
self
.
m_step
)(
e_step_output
)
dask
.
compute
(
delayed_em_step
)
self
.
_U
=
dask
.
compute
(
delayed_em_step
)
[
0
]
else
:
else
:
e_step_output
=
self
.
e_step
(
e_step_output
=
self
.
e_step
(
X
=
X
,
X
=
X
,
...
@@ -1724,6 +1725,7 @@ class JFAMachine(FactorAnalysisBase):
...
@@ -1724,6 +1725,7 @@ class JFAMachine(FactorAnalysisBase):
self
.
_V
=
V_c
.
reshape
(
self
.
_V
=
V_c
.
reshape
(
(
self
.
ubm
.
n_gaussians
*
self
.
feature_dimension
,
self
.
r_V
)
(
self
.
ubm
.
n_gaussians
*
self
.
feature_dimension
,
self
.
r_V
)
)
)
return
self
.
_V
def
finalize_v
(
self
,
X
,
y
,
n_samples_per_class
,
n_acc
,
f_acc
):
def
finalize_v
(
self
,
X
,
y
,
n_samples_per_class
,
n_acc
,
f_acc
):
"""
"""
...
@@ -1849,7 +1851,7 @@ class JFAMachine(FactorAnalysisBase):
...
@@ -1849,7 +1851,7 @@ class JFAMachine(FactorAnalysisBase):
acc_U_A1
=
reduce_iadd
(
acc_U_A1
)
acc_U_A1
=
reduce_iadd
(
acc_U_A1
)
acc_U_A2
=
reduce_iadd
(
acc_U_A2
)
acc_U_A2
=
reduce_iadd
(
acc_U_A2
)
self
.
update_U
(
acc_U_A1
,
acc_U_A2
)
return
self
.
update_U
(
acc_U_A1
,
acc_U_A2
)
def
finalize_u
(
def
finalize_u
(
self
,
self
,
...
@@ -1984,6 +1986,7 @@ class JFAMachine(FactorAnalysisBase):
...
@@ -1984,6 +1986,7 @@ class JFAMachine(FactorAnalysisBase):
acc_D_A2
=
reduce_iadd
(
acc_D_A2
)
acc_D_A2
=
reduce_iadd
(
acc_D_A2
)
self
.
_D
=
acc_D_A2
/
acc_D_A1
self
.
_D
=
acc_D_A2
/
acc_D_A1
return
self
.
_D
def
enroll_using_stats
(
self
,
X
,
iterations
=
1
):
def
enroll_using_stats
(
self
,
X
,
iterations
=
1
):
"""
"""
...
@@ -2119,7 +2122,7 @@ class JFAMachine(FactorAnalysisBase):
...
@@ -2119,7 +2122,7 @@ class JFAMachine(FactorAnalysisBase):
for
xx
,
yy
in
zip
(
X
,
y
)
for
xx
,
yy
in
zip
(
X
,
y
)
]
]
delayed_em_step
=
dask
.
delayed
(
self
.
m_step_v
)(
e_step_output
)
delayed_em_step
=
dask
.
delayed
(
self
.
m_step_v
)(
e_step_output
)
dask
.
compute
(
delayed_em_step
)
self
.
_V
=
dask
.
compute
(
delayed_em_step
)
[
0
]
else
:
else
:
e_step_output
=
self
.
e_step_v
(
e_step_output
=
self
.
e_step_v
(
X
=
X
,
X
=
X
,
...
@@ -2151,7 +2154,7 @@ class JFAMachine(FactorAnalysisBase):
...
@@ -2151,7 +2154,7 @@ class JFAMachine(FactorAnalysisBase):
for
xx
,
yy
in
zip
(
X
,
y
)
for
xx
,
yy
in
zip
(
X
,
y
)
]
]
delayed_em_step
=
dask
.
delayed
(
self
.
m_step_u
)(
e_step_output
)
delayed_em_step
=
dask
.
delayed
(
self
.
m_step_u
)(
e_step_output
)
dask
.
compute
(
delayed_em_step
)
self
.
_U
=
dask
.
compute
(
delayed_em_step
)
[
0
]
else
:
else
:
e_step_output
=
self
.
e_step_u
(
e_step_output
=
self
.
e_step_u
(
X
=
X
,
X
=
X
,
...
@@ -2182,7 +2185,7 @@ class JFAMachine(FactorAnalysisBase):
...
@@ -2182,7 +2185,7 @@ class JFAMachine(FactorAnalysisBase):
for
xx
,
yy
in
zip
(
X
,
y
)
for
xx
,
yy
in
zip
(
X
,
y
)
]
]
delayed_em_step
=
dask
.
delayed
(
self
.
m_step_d
)(
e_step_output
)
delayed_em_step
=
dask
.
delayed
(
self
.
m_step_d
)(
e_step_output
)
dask
.
compute
(
delayed_em_step
)
self
.
_D
=
dask
.
compute
(
delayed_em_step
)
[
0
]
else
:
else
:
e_step_output
=
self
.
e_step_d
(
e_step_output
=
self
.
e_step_d
(
X
=
X
,
X
=
X
,
...
...
This diff is collapsed.
Click to expand it.
bob/learn/em/test/test_factor_analysis.py
+
2
−
2
View file @
761414be
...
@@ -556,8 +556,8 @@ def test_ISV_JFA_fit():
...
@@ -556,8 +556,8 @@ def test_ISV_JFA_fit():
test_attr
=
"
V
"
test_attr
=
"
V
"
err_msg
=
f
"
Test failed with prior=
{
prior
}
and machine_type=
{
machine_type
}
and transform=
{
transform
}
"
err_msg
=
f
"
Test failed with prior=
{
prior
}
and machine_type=
{
machine_type
}
and transform=
{
transform
}
"
#
with multiprocess_dask_client():
with
multiprocess_dask_client
():
machine
.
fit
(
data
,
labels
)
machine
.
fit
(
data
,
labels
)
arr
=
getattr
(
machine
,
test_attr
)
arr
=
getattr
(
machine
,
test_attr
)
np
.
testing
.
assert_allclose
(
np
.
testing
.
assert_allclose
(
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment