Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.learn.em
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
bob
bob.learn.em
Commits
657fd50d
Commit
657fd50d
authored
3 years ago
by
Amir MOHAMMADI
Committed by
Yannick DAYER
3 years ago
Browse files
Options
Downloads
Patches
Plain Diff
clean-up the tests
parent
1e71f9fd
Branches
Branches containing commit
Tags
Tags containing commit
1 merge request
!40
Transition to a pure python implementation
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
bob/learn/em/cluster/k_means.py
+1
-1
1 addition, 1 deletion
bob/learn/em/cluster/k_means.py
bob/learn/em/test/test_kmeans.py
+22
-35
22 additions, 35 deletions
bob/learn/em/test/test_kmeans.py
with
23 additions
and
36 deletions
bob/learn/em/cluster/k_means.py
+
1
−
1
View file @
657fd50d
...
...
@@ -152,7 +152,7 @@ class KMeansMachine(BaseEstimator):
"""
if
trainer
is
None
:
logger
.
info
(
"
Using default k-means trainer.
"
)
trainer
=
KMeansTrainer
(
init_method
=
"
k-means||
"
)
trainer
=
KMeansTrainer
(
init_method
=
"
k-means||
"
,
random_state
=
self
.
random_state
)
logger
.
debug
(
f
"
Initializing trainer.
"
)
trainer
.
initialize
(
...
...
This diff is collapsed.
Click to expand it.
bob/learn/em/test/test_kmeans.py
+
22
−
35
View file @
657fd50d
...
...
@@ -8,7 +8,7 @@
"""
Tests the KMeans machine
"""
import
numpy
import
numpy
as
np
from
bob.learn.em.cluster
import
KMeansMachine
from
bob.learn.em.cluster
import
KMeansTrainer
...
...
@@ -16,45 +16,39 @@ from bob.learn.em.cluster import KMeansTrainer
import
dask.array
as
da
def
equals
(
x
,
y
,
epsilon
):
return
abs
(
x
-
y
)
<
epsilon
def
test_KMeansMachine
():
# Test a KMeansMachine
means
=
n
umpy
.
array
([[
3
,
70
,
0
],
[
4
,
72
,
0
]],
"
float64
"
)
mean
=
n
umpy
.
array
([
3
,
70
,
1
],
"
float64
"
)
means
=
n
p
.
array
([[
3
,
70
,
0
],
[
4
,
72
,
0
]],
"
float64
"
)
mean
=
n
p
.
array
([
3
,
70
,
1
],
"
float64
"
)
# Initializes a KMeansMachine
km
=
KMeansMachine
(
2
)
km
.
centroids_
=
means
# Distance and closest mean
eps
=
1e-10
assert
equals
(
km
.
transform
(
mean
)[
0
],
1
,
eps
),
km
.
transform
(
mean
)[
0
].
compute
()
assert
equals
(
km
.
transform
(
mean
)[
1
],
6
,
eps
),
km
.
transform
(
mean
)[
1
].
compute
()
np
.
testing
.
assert_almost_equal
(
km
.
transform
(
mean
)[
0
],
1
)
np
.
testing
.
assert_almost_equal
(
km
.
transform
(
mean
)[
1
],
6
)
(
index
,
dist
)
=
km
.
get_closest_centroid
(
mean
)
assert
index
==
0
assert
equal
s
(
dist
,
1
,
eps
)
assert
equal
s
(
km
.
get_min_distance
(
mean
),
1
,
eps
)
assert
index
==
0
,
index
np
.
testing
.
assert_almost_
equal
(
dist
,
1
.0
)
np
.
testing
.
assert_almost_
equal
(
km
.
get_min_distance
(
mean
),
1
)
def
test_KMeansMachine_var_and_weight
():
kmeans
=
KMeansMachine
(
2
)
kmeans
.
centroids_
=
n
umpy
.
array
([[
1.2
,
1.3
],
[
0.2
,
-
0.3
]])
kmeans
.
centroids_
=
n
p
.
array
([[
1.2
,
1.3
],
[
0.2
,
-
0.3
]])
data
=
n
umpy
.
array
([[
1.0
,
1
],
[
1.2
,
3
],
[
0
,
0
],
[
0.3
,
0.2
],
[
0.2
,
0
]])
data
=
n
p
.
array
([[
1.0
,
1
],
[
1.2
,
3
],
[
0
,
0
],
[
0.3
,
0.2
],
[
0.2
,
0
]])
variances
,
weights
=
kmeans
.
get_variances_and_weights_for_each_cluster
(
data
)
variances_result
=
n
umpy
.
array
([[
0.01
,
1.0
],
[
0.01555556
,
0.00888889
]])
weights_result
=
n
umpy
.
array
([
0.4
,
0.6
])
variances_result
=
n
p
.
array
([[
0.01
,
1.0
],
[
0.01555556
,
0.00888889
]])
weights_result
=
n
p
.
array
([
0.4
,
0.6
])
assert
equals
(
weights_result
,
weights
,
1e-3
).
all
(
)
assert
equals
(
variances_result
,
variances
,
1e-3
).
all
(
)
np
.
testing
.
assert_almost_equal
(
variances
,
variances_result
)
np
.
testing
.
assert_almost_equal
(
weights
,
weights_result
)
def
test_kmeans_fit
():
...
...
@@ -62,12 +56,9 @@ def test_kmeans_fit():
data1
=
da
.
random
.
normal
(
loc
=
1
,
size
=
(
2000
,
3
))
data2
=
da
.
random
.
normal
(
loc
=-
1
,
size
=
(
2000
,
3
))
data
=
da
.
concatenate
([
data1
,
data2
],
axis
=
0
)
machine
=
KMeansMachine
(
2
).
fit
(
data
)
expected
=
da
.
array
(
[[
-
0.99262315
,
-
1.05226141
,
-
1.00525245
],
[
1.00426431
,
1.00359693
,
1.05996704
]]
)
centroids
=
machine
.
centroids_
.
compute
()
numpy
.
testing
.
assert_array_almost_equal
(
centroids
,
expected
)
machine
=
KMeansMachine
(
2
,
random_state
=
0
).
fit
(
data
)
expected
=
[[
1.00426431
,
1.00359693
,
1.05996704
],
[
-
0.99262315
,
-
1.05226141
,
-
1.00525245
]]
np
.
testing
.
assert_almost_equal
(
machine
.
centroids_
,
expected
)
def
test_kmeans_fit_init_pp
():
...
...
@@ -75,12 +66,10 @@ def test_kmeans_fit_init_pp():
data1
=
da
.
random
.
normal
(
loc
=
1
,
size
=
(
2000
,
3
))
data2
=
da
.
random
.
normal
(
loc
=-
1
,
size
=
(
2000
,
3
))
data
=
da
.
concatenate
([
data1
,
data2
],
axis
=
0
)
trainer
=
KMeansTrainer
(
init_method
=
"
k-means++
"
)
trainer
=
KMeansTrainer
(
init_method
=
"
k-means++
"
,
random_state
=
0
)
machine
=
KMeansMachine
(
2
).
fit
(
data
,
trainer
=
trainer
)
expected
=
da
.
array
(
[[
-
0.99262315
,
-
1.05226141
,
-
1.00525245
],
[
1.00426431
,
1.00359693
,
1.05996704
]]
)
assert
da
.
isclose
(
machine
.
centroids_
,
expected
).
all
(),
machine
.
centroids_
.
compute
()
expected
=
[[
-
0.99262315
,
-
1.05226141
,
-
1.00525245
],
[
1.00426431
,
1.00359693
,
1.05996704
]]
np
.
testing
.
assert_almost_equal
(
machine
.
centroids_
,
expected
)
def
test_kmeans_fit_init_random
():
...
...
@@ -90,7 +79,5 @@ def test_kmeans_fit_init_random():
data
=
da
.
concatenate
([
data1
,
data2
],
axis
=
0
)
trainer
=
KMeansTrainer
(
init_method
=
"
random
"
,
random_state
=
0
)
machine
=
KMeansMachine
(
2
).
fit
(
data
,
trainer
=
trainer
)
expected
=
da
.
array
(
[[
-
0.99433738
,
-
1.05561588
,
-
1.01236246
],
[
0.99800688
,
0.99873325
,
1.05879539
]]
)
assert
da
.
isclose
(
machine
.
centroids_
,
expected
).
all
(),
machine
.
centroids_
.
compute
()
expected
=
[[
-
0.99433738
,
-
1.05561588
,
-
1.01236246
],
[
0.99800688
,
0.99873325
,
1.05879539
]]
np
.
testing
.
assert_almost_equal
(
machine
.
centroids_
,
expected
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment