Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.learn.em
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
bob
bob.learn.em
Commits
5ce317d2
Commit
5ce317d2
authored
3 years ago
by
Amir MOHAMMADI
Browse files
Options
Downloads
Patches
Plain Diff
[factor_analysis] Still allow fit and init using gmm stats
parent
482d4273
Branches
Branches containing commit
Tags
Tags containing commit
1 merge request
!53
Factor Analysis on pure python
Pipeline
#60142
failed
3 years ago
Stage: build
Changes
3
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
bob/learn/em/factor_analysis.py
+26
-15
26 additions, 15 deletions
bob/learn/em/factor_analysis.py
bob/learn/em/test/test_jfa.py
+1
-1
1 addition, 1 deletion
bob/learn/em/test/test_jfa.py
bob/learn/em/test/test_jfa_trainer.py
+11
-11
11 additions, 11 deletions
bob/learn/em/test/test_jfa_trainer.py
with
38 additions
and
27 deletions
bob/learn/em/factor_analysis.py
+
26
−
15
View file @
5ce317d2
...
@@ -104,6 +104,9 @@ class FactorAnalysisBase(BaseEstimator):
...
@@ -104,6 +104,9 @@ class FactorAnalysisBase(BaseEstimator):
self
.
relevance_factor
=
relevance_factor
self
.
relevance_factor
=
relevance_factor
if
ubm
is
not
None
:
self
.
create_UVD
()
@property
@property
def
feature_dimension
(
self
):
def
feature_dimension
(
self
):
"""
Get the UBM Dimension
"""
"""
Get the UBM Dimension
"""
...
@@ -216,6 +219,9 @@ class FactorAnalysisBase(BaseEstimator):
...
@@ -216,6 +219,9 @@ class FactorAnalysisBase(BaseEstimator):
if
not
hasattr
(
self
,
"
_U
"
)
or
not
hasattr
(
self
,
"
_D
"
):
if
not
hasattr
(
self
,
"
_U
"
)
or
not
hasattr
(
self
,
"
_D
"
):
self
.
create_UVD
()
self
.
create_UVD
()
self
.
initialize_using_stats
(
ubm_projected_X
,
y
)
def
initialize_using_stats
(
self
,
ubm_projected_X
,
y
):
# Accumulating 0th and 1st order statistics
# Accumulating 0th and 1st order statistics
# https://gitlab.idiap.ch/bob/bob.learn.em/-/blob/da92d0e5799d018f311f1bf5cdd5a80e19e142ca/bob/learn/em/cpp/ISVTrainer.cpp#L68
# https://gitlab.idiap.ch/bob/bob.learn.em/-/blob/da92d0e5799d018f311f1bf5cdd5a80e19e142ca/bob/learn/em/cpp/ISVTrainer.cpp#L68
# 0th order stats
# 0th order stats
...
@@ -814,7 +820,7 @@ class FactorAnalysisBase(BaseEstimator):
...
@@ -814,7 +820,7 @@ class FactorAnalysisBase(BaseEstimator):
np
.
zeros
(
np
.
zeros
(
(
(
self
.
r_U
,
self
.
r_U
,
y
.
count
(
y_i
),
np
.
sum
(
y
==
y_i
),
)
)
)
)
)
)
...
@@ -1192,7 +1198,7 @@ class ISVMachine(FactorAnalysisBase):
...
@@ -1192,7 +1198,7 @@ class ISVMachine(FactorAnalysisBase):
ubm
=
None
,
ubm
=
None
,
**
gmm_kwargs
,
**
gmm_kwargs
,
):
):
super
(
ISVMachine
,
self
).
__init__
(
super
().
__init__
(
r_U
=
r_U
,
r_U
=
r_U
,
relevance_factor
=
relevance_factor
,
relevance_factor
=
relevance_factor
,
em_iterations
=
em_iterations
,
em_iterations
=
em_iterations
,
...
@@ -1213,7 +1219,7 @@ class ISVMachine(FactorAnalysisBase):
...
@@ -1213,7 +1219,7 @@ class ISVMachine(FactorAnalysisBase):
y: np.ndarray of shape(n_clients,)
y: np.ndarray of shape(n_clients,)
Client labels.
Client labels.
"""
"""
return
super
(
ISVMachine
,
self
).
initialize
(
X
,
y
)
return
super
().
initialize
(
X
,
y
)
def
e_step
(
self
,
X
,
y
,
n_acc
,
f_acc
):
def
e_step
(
self
,
X
,
y
,
n_acc
,
f_acc
):
"""
"""
...
@@ -1252,7 +1258,7 @@ class ISVMachine(FactorAnalysisBase):
...
@@ -1252,7 +1258,7 @@ class ISVMachine(FactorAnalysisBase):
self
.
update_U
(
acc_U_A1
,
acc_U_A2
)
self
.
update_U
(
acc_U_A1
,
acc_U_A2
)
def
fit
(
self
,
X
,
y
):
def
fit
_using_stats
(
self
,
X
,
y
):
"""
"""
Trains the U matrix (session variability matrix)
Trains the U matrix (session variability matrix)
...
@@ -1270,10 +1276,10 @@ class ISVMachine(FactorAnalysisBase):
...
@@ -1270,10 +1276,10 @@ class ISVMachine(FactorAnalysisBase):
"""
"""
y
=
np
.
array
(
y
)
.
tolist
()
if
not
isinstance
(
y
,
list
)
else
y
y
=
np
.
as
array
(
y
)
# TODO: Point of MAP-REDUCE
# TODO: Point of MAP-REDUCE
n_acc
,
f_acc
=
self
.
initialize
(
X
,
y
)
n_acc
,
f_acc
=
self
.
initialize
_using_stats
(
X
,
y
)
for
i
in
range
(
self
.
em_iterations
):
for
i
in
range
(
self
.
em_iterations
):
logger
.
info
(
"
U Training: Iteration %d
"
,
i
)
logger
.
info
(
"
U Training: Iteration %d
"
,
i
)
# TODO: Point of MAP-REDUCE
# TODO: Point of MAP-REDUCE
...
@@ -1412,20 +1418,25 @@ class JFAMachine(FactorAnalysisBase):
...
@@ -1412,20 +1418,25 @@ class JFAMachine(FactorAnalysisBase):
"""
"""
def
__init__
(
def
__init__
(
self
,
ubm
,
r_U
,
r_V
,
em_iterations
=
10
,
relevance_factor
=
4.0
,
seed
=
0
self
,
ubm
,
r_U
,
r_V
,
em_iterations
=
10
,
relevance_factor
=
4.0
,
seed
=
0
,
**
kwargs
,
):
):
super
(
JFAMachine
,
self
).
__init__
(
super
().
__init__
(
ubm
,
ubm
=
ubm
,
r_U
=
r_U
,
r_U
=
r_U
,
r_V
=
r_V
,
r_V
=
r_V
,
relevance_factor
=
relevance_factor
,
relevance_factor
=
relevance_factor
,
em_iterations
=
em_iterations
,
em_iterations
=
em_iterations
,
seed
=
seed
,
seed
=
seed
,
**
kwargs
,
)
)
def
initialize
(
self
,
X
,
y
):
return
super
(
JFAMachine
,
self
).
initialize
(
X
,
y
)
def
e_step_v
(
self
,
X
,
y
,
n_acc
,
f_acc
):
def
e_step_v
(
self
,
X
,
y
,
n_acc
,
f_acc
):
"""
"""
ISV E-step for the V matrix.
ISV E-step for the V matrix.
...
@@ -1769,7 +1780,7 @@ class JFAMachine(FactorAnalysisBase):
...
@@ -1769,7 +1780,7 @@ class JFAMachine(FactorAnalysisBase):
"""
"""
return
self
.
enroll
([
self
.
ubm
.
transform
(
X
)],
iterations
)
return
self
.
enroll
([
self
.
ubm
.
transform
(
X
)],
iterations
)
def
fit
(
self
,
X
,
y
):
def
fit
_using_stats
(
self
,
X
,
y
):
"""
"""
Trains the U matrix (session variability matrix)
Trains the U matrix (session variability matrix)
...
@@ -1795,10 +1806,10 @@ class JFAMachine(FactorAnalysisBase):
...
@@ -1795,10 +1806,10 @@ class JFAMachine(FactorAnalysisBase):
):
):
self
.
create_UVD
()
self
.
create_UVD
()
y
=
np
.
array
(
y
)
.
tolist
()
if
not
isinstance
(
y
,
list
)
else
y
y
=
np
.
as
array
(
y
)
# TODO: Point of MAP-REDUCE
# TODO: Point of MAP-REDUCE
n_acc
,
f_acc
=
self
.
initialize
(
X
,
y
)
n_acc
,
f_acc
=
self
.
initialize
_using_stats
(
X
,
y
)
# Updating V
# Updating V
for
i
in
range
(
self
.
em_iterations
):
for
i
in
range
(
self
.
em_iterations
):
...
...
This diff is collapsed.
Click to expand it.
bob/learn/em/test/test_jfa.py
+
1
−
1
View file @
5ce317d2
...
@@ -65,7 +65,7 @@ def test_ISVMachine():
...
@@ -65,7 +65,7 @@ def test_ISVMachine():
ubm
.
variances
=
np
.
array
([[
1
,
2
,
1
],
[
2
,
1
,
2
]],
"
float64
"
)
ubm
.
variances
=
np
.
array
([[
1
,
2
,
1
],
[
2
,
1
,
2
]],
"
float64
"
)
# Creates a ISVMachine
# Creates a ISVMachine
isv_machine
=
ISVMachine
(
ubm
,
r_U
=
2
,
em_iterations
=
10
)
isv_machine
=
ISVMachine
(
ubm
=
ubm
,
r_U
=
2
,
em_iterations
=
10
)
isv_machine
.
U
=
np
.
array
(
isv_machine
.
U
=
np
.
array
(
[[
1
,
2
],
[
3
,
4
],
[
5
,
6
],
[
7
,
8
],
[
9
,
10
],
[
11
,
12
]],
"
float64
"
[[
1
,
2
],
[
3
,
4
],
[
5
,
6
],
[
7
,
8
],
[
9
,
10
],
[
11
,
12
]],
"
float64
"
)
)
...
...
This diff is collapsed.
Click to expand it.
bob/learn/em/test/test_jfa_trainer.py
+
11
−
11
View file @
5ce317d2
...
@@ -126,7 +126,7 @@ def test_JFATrainAndEnrol():
...
@@ -126,7 +126,7 @@ def test_JFATrainAndEnrol():
it
.
U
=
copy
.
deepcopy
(
M_u
)
it
.
U
=
copy
.
deepcopy
(
M_u
)
it
.
V
=
copy
.
deepcopy
(
M_v
)
it
.
V
=
copy
.
deepcopy
(
M_v
)
it
.
D
=
copy
.
deepcopy
(
M_d
)
it
.
D
=
copy
.
deepcopy
(
M_d
)
it
.
fit
(
TRAINING_STATS_X
,
TRAINING_STATS_y
)
it
.
fit
_using_stats
(
TRAINING_STATS_X
,
TRAINING_STATS_y
)
v_ref
=
np
.
array
(
v_ref
=
np
.
array
(
[
[
...
@@ -225,7 +225,7 @@ def test_JFATrainAndEnrolWithNumpy():
...
@@ -225,7 +225,7 @@ def test_JFATrainAndEnrolWithNumpy():
it
.
U
=
copy
.
deepcopy
(
M_u
)
it
.
U
=
copy
.
deepcopy
(
M_u
)
it
.
V
=
copy
.
deepcopy
(
M_v
)
it
.
V
=
copy
.
deepcopy
(
M_v
)
it
.
D
=
copy
.
deepcopy
(
M_d
)
it
.
D
=
copy
.
deepcopy
(
M_d
)
it
.
fit
(
TRAINING_STATS_X
,
TRAINING_STATS_y
)
it
.
fit
_using_stats
(
TRAINING_STATS_X
,
TRAINING_STATS_y
)
v_ref
=
np
.
array
(
v_ref
=
np
.
array
(
[
[
...
@@ -337,14 +337,14 @@ def test_ISVTrainAndEnrol():
...
@@ -337,14 +337,14 @@ def test_ISVTrainAndEnrol():
ubm
.
variances
=
UBM_VAR
.
reshape
((
2
,
3
))
ubm
.
variances
=
UBM_VAR
.
reshape
((
2
,
3
))
it
=
ISVMachine
(
it
=
ISVMachine
(
ubm
,
ubm
=
ubm
,
r_U
=
2
,
r_U
=
2
,
relevance_factor
=
4.0
,
relevance_factor
=
4.0
,
em_iterations
=
10
,
em_iterations
=
10
,
)
)
it
.
U
=
copy
.
deepcopy
(
M_u
)
it
.
U
=
copy
.
deepcopy
(
M_u
)
it
=
it
.
fit
(
TRAINING_STATS_X
,
TRAINING_STATS_y
)
it
=
it
.
fit
_using_stats
(
TRAINING_STATS_X
,
TRAINING_STATS_y
)
np
.
testing
.
assert_allclose
(
it
.
D
,
d_ref
,
rtol
=
eps
,
atol
=
1e-8
)
np
.
testing
.
assert_allclose
(
it
.
D
,
d_ref
,
rtol
=
eps
,
atol
=
1e-8
)
np
.
testing
.
assert_allclose
(
it
.
U
,
u_ref
,
rtol
=
eps
,
atol
=
1e-8
)
np
.
testing
.
assert_allclose
(
it
.
U
,
u_ref
,
rtol
=
eps
,
atol
=
1e-8
)
...
@@ -417,14 +417,14 @@ def test_ISVTrainAndEnrolWithNumpy():
...
@@ -417,14 +417,14 @@ def test_ISVTrainAndEnrolWithNumpy():
ubm
.
variances
=
UBM_VAR
.
reshape
((
2
,
3
))
ubm
.
variances
=
UBM_VAR
.
reshape
((
2
,
3
))
it
=
ISVMachine
(
it
=
ISVMachine
(
ubm
,
ubm
=
ubm
,
r_U
=
2
,
r_U
=
2
,
relevance_factor
=
4.0
,
relevance_factor
=
4.0
,
em_iterations
=
10
,
em_iterations
=
10
,
)
)
it
.
U
=
copy
.
deepcopy
(
M_u
)
it
.
U
=
copy
.
deepcopy
(
M_u
)
it
=
it
.
fit
(
TRAINING_STATS_X
,
TRAINING_STATS_y
)
it
=
it
.
fit
_using_stats
(
TRAINING_STATS_X
,
TRAINING_STATS_y
)
np
.
testing
.
assert_allclose
(
it
.
D
,
d_ref
,
rtol
=
eps
,
atol
=
1e-8
)
np
.
testing
.
assert_allclose
(
it
.
D
,
d_ref
,
rtol
=
eps
,
atol
=
1e-8
)
np
.
testing
.
assert_allclose
(
it
.
U
,
u_ref
,
rtol
=
eps
,
atol
=
1e-8
)
np
.
testing
.
assert_allclose
(
it
.
U
,
u_ref
,
rtol
=
eps
,
atol
=
1e-8
)
...
@@ -466,13 +466,13 @@ def test_JFATrainInitialize():
...
@@ -466,13 +466,13 @@ def test_JFATrainInitialize():
it
=
JFAMachine
(
ubm
,
2
,
2
,
em_iterations
=
10
)
it
=
JFAMachine
(
ubm
,
2
,
2
,
em_iterations
=
10
)
# first round
# first round
it
.
initialize
(
TRAINING_STATS_X
,
TRAINING_STATS_y
)
it
.
initialize
_using_stats
(
TRAINING_STATS_X
,
TRAINING_STATS_y
)
u1
=
it
.
U
u1
=
it
.
U
v1
=
it
.
V
v1
=
it
.
V
d1
=
it
.
D
d1
=
it
.
D
# second round
# second round
it
.
initialize
(
TRAINING_STATS_X
,
TRAINING_STATS_y
)
it
.
initialize
_using_stats
(
TRAINING_STATS_X
,
TRAINING_STATS_y
)
u2
=
it
.
U
u2
=
it
.
U
v2
=
it
.
V
v2
=
it
.
V
d2
=
it
.
D
d2
=
it
.
D
...
@@ -493,15 +493,15 @@ def test_ISVTrainInitialize():
...
@@ -493,15 +493,15 @@ def test_ISVTrainInitialize():
ubm
.
variances
=
UBM_VAR
.
reshape
((
2
,
3
))
ubm
.
variances
=
UBM_VAR
.
reshape
((
2
,
3
))
# ISV
# ISV
it
=
ISVMachine
(
ubm
,
2
,
em_iterations
=
10
)
it
=
ISVMachine
(
2
,
em_iterations
=
10
,
ubm
=
ubm
)
# it.rng = rng
# it.rng = rng
it
.
initialize
(
TRAINING_STATS_X
,
TRAINING_STATS_y
)
it
.
initialize
_using_stats
(
TRAINING_STATS_X
,
TRAINING_STATS_y
)
u1
=
copy
.
deepcopy
(
it
.
U
)
u1
=
copy
.
deepcopy
(
it
.
U
)
d1
=
copy
.
deepcopy
(
it
.
D
)
d1
=
copy
.
deepcopy
(
it
.
D
)
# second round
# second round
it
.
initialize
(
TRAINING_STATS_X
,
TRAINING_STATS_y
)
it
.
initialize
_using_stats
(
TRAINING_STATS_X
,
TRAINING_STATS_y
)
u2
=
it
.
U
u2
=
it
.
U
d2
=
it
.
D
d2
=
it
.
D
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment