PyErr_Format(PyExc_TypeError,"`%s' 2D `input` array should have the shape [%"PY_FORMAT_SIZE_T"d, %"PY_FORMAT_SIZE_T"d] not [%"PY_FORMAT_SIZE_T"d, %"PY_FORMAT_SIZE_T"d] for `%s`",Py_TYPE(self)->tp_name,self->cxx->getNGaussians(),self->cxx->getNInputs(),input->shape[1],input->shape[0],means.name());
PyErr_Format(PyExc_TypeError,"`%s' 2D `input` array should have the shape [%"PY_FORMAT_SIZE_T"d, %"PY_FORMAT_SIZE_T"d] not [%"PY_FORMAT_SIZE_T"d, %"PY_FORMAT_SIZE_T"d] for `%s`",Py_TYPE(self)->tp_name,self->cxx->getNGaussians(),self->cxx->getNInputs(),input->shape[1],input->shape[0],variances.name());
PyErr_Format(PyExc_TypeError,"`%s' 1D `input` array should have %"PY_FORMAT_SIZE_T"d elements, not %"PY_FORMAT_SIZE_T"d for `%s`",Py_TYPE(self)->tp_name,self->cxx->getNGaussians(),input->shape[0],weights.name());
PyErr_Format(PyExc_TypeError,"`%s' 1D `input` array should have %"PY_FORMAT_SIZE_T"d elements, not %"PY_FORMAT_SIZE_T"d for `%s`",Py_TYPE(self)->tp_name,self->cxx->getNGaussians()*(Py_ssize_t)self->cxx->getNInputs(),input->shape[0],variance_supervector.name());
PyErr_Format(PyExc_TypeError,"`%s' 1D `input` array should have %"PY_FORMAT_SIZE_T"d elements, not %"PY_FORMAT_SIZE_T"d for `%s`",Py_TYPE(self)->tp_name,self->cxx->getNGaussians()*(Py_ssize_t)self->cxx->getNInputs(),input->shape[0],mean_supervector.name());
"Set the variance flooring thresholds in each dimension to the same vector for all Gaussian components if the argument is a 1D numpy arrray, and equal for all Gaussian components and dimensions if the parameter is a scalar. ",
""
);
...
...
@@ -427,8 +427,8 @@ int PyBobLearnEMGMMMachine_setVarianceThresholds(PyBobLearnEMGMMMachineObject* s
return-1;
}
autoo_=make_safe(input);
// perform check on the input
// perform check on the input
if(input->type_num!=NPY_FLOAT64){
PyErr_Format(PyExc_TypeError,"`%s' only supports 64-bit float arrays for input array `%s`",Py_TYPE(self)->tp_name,variance_thresholds.name());
return-1;
...
...
@@ -437,24 +437,24 @@ int PyBobLearnEMGMMMachine_setVarianceThresholds(PyBobLearnEMGMMMachineObject* s
if(input->ndim!=2){
PyErr_Format(PyExc_TypeError,"`%s' only processes 2D arrays of float64 for `%s`",Py_TYPE(self)->tp_name,variance_thresholds.name());
PyErr_Format(PyExc_TypeError,"`%s' 2D `input` array should have the shape [%"PY_FORMAT_SIZE_T"d, %"PY_FORMAT_SIZE_T"d] not [%"PY_FORMAT_SIZE_T"d, %"PY_FORMAT_SIZE_T"d] for `%s`",Py_TYPE(self)->tp_name,self->cxx->getNGaussians(),self->cxx->getNInputs(),input->shape[1],input->shape[0],variance_thresholds.name());
PyErr_Format(PyExc_TypeError,"`%s' 1D `input` array should have %"PY_FORMAT_SIZE_T"d elements, not %"PY_FORMAT_SIZE_T"d",Py_TYPE(self)->tp_name,self->cxx->getNInputs(),input->shape[0]);
PyErr_Format(PyExc_TypeError,"`%s' 1D `input` array should have %"PY_FORMAT_SIZE_T"d elements, not %"PY_FORMAT_SIZE_T"d",Py_TYPE(self)->tp_name,self->cxx->getNInputs(),input->shape[0]);
PyErr_Format(PyExc_TypeError,"`%s' 1D `input` array should have %"PY_FORMAT_SIZE_T"d elements, not %"PY_FORMAT_SIZE_T"d for `%s`",Py_TYPE(self)->tp_name,(Py_ssize_t)self->cxx->n.extent(0),input->shape[0],n.name());
PyErr_Format(PyExc_TypeError,"`%s' 2D `input` array should have the shape [%"PY_FORMAT_SIZE_T"d, %"PY_FORMAT_SIZE_T"d] not [%"PY_FORMAT_SIZE_T"d, %"PY_FORMAT_SIZE_T"d] for `%s`",Py_TYPE(self)->tp_name,(Py_ssize_t)self->cxx->sumPx.extent(1),(Py_ssize_t)self->cxx->sumPx.extent(0),(Py_ssize_t)input->shape[1],(Py_ssize_t)input->shape[0],sum_px.name());
PyErr_Format(PyExc_TypeError,"`%s' 2D `input` array should have the shape [%"PY_FORMAT_SIZE_T"d, %"PY_FORMAT_SIZE_T"d] not [%"PY_FORMAT_SIZE_T"d, %"PY_FORMAT_SIZE_T"d] for `%s`",Py_TYPE(self)->tp_name,(Py_ssize_t)self->cxx->sumPxx.extent(1),(Py_ssize_t)self->cxx->sumPxx.extent(0),(Py_ssize_t)input->shape[1],(Py_ssize_t)input->shape[0],sum_pxx.name());