Skip to content
Snippets Groups Projects
Commit 2950575c authored by Yannick DAYER's avatar Yannick DAYER
Browse files

meta [readme]: Switch the readme.rst to markdown.

parent e4cee8a6
No related branches found
No related tags found
1 merge request!76meta [readme]: Switch the readme.rst to markdown
Pipeline #73273 passed
include LICENSE README.rst
include LICENSE README.md
recursive-include doc conf.py *.rst
recursive-include src/bob/learn/em/data *.*
.. vim: set fileencoding=utf-8 :
.. Mon 15 Aug 2016 09:48:28 CEST
.. image:: https://img.shields.io/badge/docs-latest-orange.svg
:target: https://www.idiap.ch/software/bob/docs/bob/bob.learn.em/master/sphinx/index.html
.. image:: https://gitlab.idiap.ch/bob/bob.learn.em/badges/master/pipeline.svg
:target: https://gitlab.idiap.ch/bob/bob.learn.em/commits/master
.. image:: https://gitlab.idiap.ch/bob/bob.learn.em/badges/master/coverage.svg
:target: https://www.idiap.ch/software/bob/docs/bob/bob.learn.em/master/coverage
.. image:: https://img.shields.io/badge/gitlab-project-0000c0.svg
:target: https://gitlab.idiap.ch/bob/bob.learn.em
[![badge latest doc](https://img.shields.io/badge/docs-latest-orange.svg)](https://www.idiap.ch/software/bob/docs/bob/bob.learn.em/master/sphinx/index.html)
[![badge pipeline](https://gitlab.idiap.ch/bob/bob.learn.em/badges/master/pipeline.svg)](https://gitlab.idiap.ch/bob/bob.learn.em/commits/master)
[![badge coverage](https://gitlab.idiap.ch/bob/bob.learn.em/badges/master/coverage.svg)](https://www.idiap.ch/software/bob/docs/bob/bob.learn.em/master/coverage)
[![badge gitlab](https://img.shields.io/badge/gitlab-project-0000c0.svg)](https://gitlab.idiap.ch/bob/bob.learn.em)
=================================================
Expectation Maximization Machine Learning Tools
=================================================
# Expectation Maximization Machine Learning Tools
This package is part of the signal-processing and machine learning toolbox
Bob_. It contains routines for learning probabilistic models via Expectation
Maximization (EM).
[Bob](https://www.idiap.ch/software/bob). It contains routines for learning
probabilistic models via Expectation Maximization (EM).
The EM algorithm is an iterative method that estimates parameters for
statistical models, where the model depends on unobserved latent variables. The
......@@ -28,7 +19,8 @@ computes parameters maximizing the expected log-likelihood found on the E step.
These parameter-estimates are then used to determine the distribution of the
latent variables in the next E step.
The package includes the machine definition per se and a selection of different trainers for specialized purposes:
The package includes the machine definition per se and a selection of different
trainers for specialized purposes:
- Maximum Likelihood (ML)
- Maximum a Posteriori (MAP)
......@@ -40,23 +32,17 @@ The package includes the machine definition per se and a selection of different
- EM Principal Component Analysis (EM-PCA)
Installation
------------
## Installation
Complete Bob's `installation`_ instructions. Then, to install this package,
run::
Complete Bob's [installation](https://www.idiap.ch/software/bob/install)
instructions. Then, to install this package, run:
$ conda install bob.learn.em
``` sh
conda install bob.learn.em
```
Contact
-------
## Contact
For questions or reporting issues to this software package, contact our
development `mailing list`_.
.. Place your references here:
.. _bob: https://www.idiap.ch/software/bob
.. _installation: https://www.idiap.ch/software/bob/install
.. _mailing list: https://www.idiap.ch/software/bob/discuss
development [mailing list](https://www.idiap.ch/software/bob/discuss).
......@@ -58,7 +58,7 @@
package-dir = {"" = "src"}
[tool.setuptools.dynamic]
readme = {file = "README.rst"}
readme = {file = "README.md"}
[tool.distutils.bdist_wheel]
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment