Skip to content
Snippets Groups Projects

removed unnecessary commands starting with ./bin/

Merged Alain KOMATY requested to merge hackathon2017 into master
2 files
+ 6
7
Compare changes
  • Side-by-side
  • Inline
Files
2
+ 6
6
@@ -32,10 +32,10 @@ Nevertheless, other discrete features, like Local Binary Patterns (LBP) could be
Running the example script
--------------------------
The script ``./bin/boosting_example.py`` is provided to execute digit classification tasks.
The script ``boosting_example.py`` is provided to execute digit classification tasks.
This script has several command line parameters, which vary the behavior of the training and/or testing procedure.
All parameters have a long value (starting with ``--``) and a shortcut (starting with a single ``-``).
These parameters are (see also ``./bin/boosting_example.py --help``):
These parameters are (see also ``boosting_example.py --help``):
To control the type of training, you can select:
@@ -61,19 +61,19 @@ Four different kinds of experiments can be performed:
1. Uni-variate classification using the stump classifier :py:class:`bob.learn.boosting.StumpMachine`, classifying digits 5 and 6::
$ ./bin/boosting_example.py -vv --trainer-type stump --digits 5 6
$ boosting_example.py -vv --trainer-type stump --digits 5 6
2. Uni-variate classification using the LUT classifier :py:class:`bob.learn.boosting.LUTMachine`, classifying digits 5 and 6::
$ ./bin/boosting_example.py -vv --trainer-type lut --digits 5 6
$ boosting_example.py -vv --trainer-type lut --digits 5 6
3. Multi-variate classification using LUT classifier :py:class:`bob.learn.boosting.LUTMachine` and shared features, classifying all 10 digits::
$ ./bin/boosting_example.py -vv --trainer-type lut --all-digits --multi-variate --feature-selection-style shared
$ boosting_example.py -vv --trainer-type lut --all-digits --multi-variate --feature-selection-style shared
4. Multi-variate classification using LUT classifier :py:class:`bob.learn.boosting.LUTMachine` and independent features, classifying all 10 digits::
$ ./bin/boosting_example.py -vv --trainer-type lut --all-digits --multi-variate --feature-selection-style independent
$ boosting_example.py -vv --trainer-type lut --all-digits --multi-variate --feature-selection-style independent
.. note:
Loading