Skip to content
Snippets Groups Projects

MLPAlgorithm PAD algorithm V1 version

Merged Olegs NIKISINS requested to merge mlp_algorithm into master
Files
8
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
@author: Olegs Nikisins
"""
#==============================================================================
# Import here:
import torch
#==============================================================================
# Define parameters here:
"""
Transformations to be applied to the input 1D numpy arrays (feature vectors).
Only conversion to Tensor and unsqueezing is needed to match the input of
TwoLayerMLP network
"""
def transform(x):
"""
Convert input to Tensor and unsqueeze to match the input of
TwoLayerMLP network.
Arguments
---------
x : numpy array
1D numpy array / feature vector.
Return
------
x_transform : Tensor
Torch tensor, transformed ``x`` to be used as MLP input.
"""
return torch.Tensor(x).unsqueeze(0)
"""
Define the network to be trained as a class, named ``Network``.
Note: Do not change the name of the below class, always import as ``Network``.
"""
from bob.learn.pytorch.architectures import TwoLayerMLP as Network
"""
kwargs to be used for ``Network`` initialization. The name must be ``network_kwargs``.
"""
network_kwargs = {}
network_kwargs['in_features'] = 1296
network_kwargs['n_hidden_relu'] = 10
network_kwargs['apply_sigmoid'] = False # don't use sigmoid to make the scores more even
Loading