Skip to content
Snippets Groups Projects
Commit c94e1d3a authored by Olegs NIKISINS's avatar Olegs NIKISINS
Browse files

Revised the mean-std normalization in MLPAlgorithm, updated test and config

parent c51586ca
No related branches found
No related tags found
1 merge request!4MLPAlgorithm PAD algorithm V1 version
Pipeline #26697 passed
......@@ -17,6 +17,12 @@ from bob.ip.pytorch_extractor.utils import transform_and_net_forward
from bob.ip.pytorch_extractor.utils import load_pretrained_model
from bob.pad.base.utils import mean_std_normalize
from bob.pad.base.utils import convert_list_of_frame_cont_to_array
import bob.io.base
# =============================================================================
# Main body :
......@@ -74,6 +80,14 @@ class MLPAlgorithm(Algorithm):
frame_level_scores_flag : bool
Return scores for each frame individually if True. Otherwise, return a
single score per video. Default: ``True``.
mean_std_norm_flag : bool
Perform mean-std normalization of data if set to ``True``.
Note: make sure an MLP was trained on mean-std normalizaed
features, if this flag is set to ``True``. The tutorial on MLP
training in ``bob.learn.pytorch`` provides an example on how to train
network on normalized features.
Default: ``True``.
"""
def __init__(self,
......@@ -82,14 +96,18 @@ class MLPAlgorithm(Algorithm):
model_file = None,
url = None,
archive_extension = '.tar.gz',
frame_level_scores_flag = True):
frame_level_scores_flag = True,
mean_std_norm_flag = True):
super(MLPAlgorithm, self).__init__(config_file = config_file,
config_group = config_group,
model_file = model_file,
url = url,
archive_extension = archive_extension,
frame_level_scores_flag = frame_level_scores_flag)
frame_level_scores_flag = frame_level_scores_flag,
mean_std_norm_flag = mean_std_norm_flag,
performs_projection=True,
requires_projector_training=True)
self.config_file = config_file
self.config_group = config_group
......@@ -97,6 +115,97 @@ class MLPAlgorithm(Algorithm):
self.url = url
self.archive_extension = archive_extension
self.frame_level_scores_flag = frame_level_scores_flag
self.mean_std_norm_flag = mean_std_norm_flag
self.features_mean = None # this argument will be updated with features mean
self.features_std = None # this argument will be updated with features std
# =========================================================================
def _save_mean_std(self,
projector_file,
features_mean,
features_std):
"""
Saves mean and std normalization to the hdf5 file.
The absolute name of the file is specified in ``projector_file`` string.
Parameters
----------
projector_file : str
Absolute name of the file to save the data to, as returned by
``bob.pad.base`` framework.
features_mean : 1D :py:class:`numpy.ndarray`
Mean of the features.
features_std : 1D :py:class:`numpy.ndarray`
Standart deviation of the features.
"""
f = bob.io.base.HDF5File(projector_file,'w') # open hdf5 file to save
f.set("features_mean", features_mean)
f.set("features_std", features_std)
del f
# =========================================================================
def train_projector(self, training_features, projector_file):
"""
Compute mean-std normalizers using samples of the real class only.
Parameters
----------
training_features : [[object], [object]]
A list containing two elements: [0] - a list of Frame Containers
with feature vectors for the real class;
[1] - a list of Frame Containers with feature vectors for the
attack class.
projector_file : str
The file to save the trained projector to, as returned by the
``bob.pad.base`` framework.
"""
# training_features[0] - training features for the REAL class.
# training_features[1] - training features for the ATTACK class.
real = convert_list_of_frame_cont_to_array(training_features[0])
# compute normalization params:
_, features_mean, features_std = mean_std_normalize(real)
# Save the normalizers:
self._save_mean_std(projector_file, features_mean, features_std)
# =========================================================================
def load_projector(self, projector_file):
"""
Loads features mean and std from the hdf5 file.
The absolute name of the file is specified in ``projector_file`` string.
Parameters
----------
projector_file : str
Absolute name of the file to load the trained projector from, as
returned by ``bob.pad.base`` framework.
"""
f = bob.io.base.HDF5File(projector_file, 'r') # file to read
features_mean = f.read("features_mean")
features_std = f.read("features_std")
del f
self.features_mean = features_mean
self.features_std = features_std
# =========================================================================
......@@ -135,6 +244,12 @@ class MLPAlgorithm(Algorithm):
feature = feature.as_array()
if self.mean_std_norm_flag:
feature, _, _ = mean_std_normalize(feature,
self.features_mean,
self.features_std)
# kwargs for the transform_and_net_forward function:
function_kwargs = {}
function_kwargs["config_file"] = self.config_file
......@@ -142,7 +257,8 @@ class MLPAlgorithm(Algorithm):
function_kwargs["model_file"] = self.model_file
function_kwargs["color_input_flag"] = False
scores = transform_and_net_forward(feature = feature, **function_kwargs)
scores = transform_and_net_forward(feature = feature,
**function_kwargs)
return scores
......
#!/usr/bin/env python
# encoding: utf-8
import pkg_resources
import numpy
numpy.random.seed(10)
import os
def test_cnn8():
......@@ -108,7 +105,7 @@ def test_mlp_algorithm():
# =========================================================================
# prepare the test data / feature vector:
features = numpy.random.randn(2, 100)
features = numpy.random.randn(2, 1296)
# =========================================================================
# test the extractor:
......
......@@ -6,8 +6,6 @@
#==============================================================================
# Import here:
import numpy as np
import torch
......@@ -16,17 +14,14 @@ import torch
"""
Transformations to be applied to the input 1D numpy arrays (feature vectors).
Here, for demonstrative purposes, the transformation is mean std-normalization,
where mean and std values are just numpy generated vectors. In real applications,
normalizers must be computed in the meaningfull way. This config is just for
test purposes.
Only conversion to Tensor and unsqueezing is needed to match the input of
TwoLayerMLP network
"""
def transform(x):
"""
Transformation function applying dummy mean-std normalization and converting
input numpy feature vectors to PyTorch tensors, making them compatible with
MLP.
Convert input to Tensor and unsqueeze to match the input of
TwoLayerMLP network.
Arguments
---------
......@@ -39,15 +34,7 @@ def transform(x):
Torch tensor, transformed ``x`` to be used as MLP input.
"""
features_mean = np.zeros(x.shape)
features_std = np.ones(x.shape)
x_norm = (x - features_mean) / features_std
x_norm.squeeze()
return torch.Tensor(x_norm).unsqueeze(0)
return torch.Tensor(x).unsqueeze(0)
"""
......@@ -62,7 +49,7 @@ from bob.learn.pytorch.architectures import TwoLayerMLP as Network
kwargs to be used for ``Network`` initialization. The name must be ``network_kwargs``.
"""
network_kwargs = {}
network_kwargs['in_features'] = 100
network_kwargs['in_features'] = 1296
network_kwargs['n_hidden_relu'] = 10
network_kwargs['apply_sigmoid'] = False # don't use sigmoid to make the scores more even
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment