Skip to content
Snippets Groups Projects
Commit 4aa5a6aa authored by André Anjos's avatar André Anjos :speech_balloon:
Browse files

Complete, with documentation, tests and doctests

parent 3237e0ec
No related branches found
No related tags found
No related merge requests found
include README.rst buildout.cfg bootstrap.py
recursive-include doc *.rst *.py
recursive-include xbob *.cpp *.h *.dat
......@@ -14,14 +14,13 @@
:target: https://pypi.python.org/pypi/xbob.ip.flandmark
==============================
Python Bindings to flandmark
Python Bindings to Flandmark
==============================
This package is a simple Boost.Python wrapper to the (rather quick) open-source
facial landmark detector `flandmark
<http://cmp.felk.cvut.cz/~uricamic/flandmark/index.php>`_, **version 1.0.7**
(or the github state as of 10/february/2013).
If you use this package, the author asks you to cite the following paper::
This package is a simple Python wrapper to the (rather quick) open-source
facial landmark detector `Flandmark`_, **version 1.0.7** (or the github state
as of 10/february/2013). If you use this package, the author asks you to cite
the following paper::
@inproceedings{Uricar-Franc-Hlavac-VISAPP-2012,
author = {U{\v{r}}i{\v{c}}{\'{a}}{\v{r}}, Michal and Franc, Vojt{\v{e}}ch and Hlav{\'{a}}{\v{c}}, V{\'{a}}clav},
......@@ -46,8 +45,8 @@ If you use this package, the author asks you to cite the following paper::
www = {http://www.visapp.visigrapp.org},
}
You should also cite `Bob <http://www.idiap.ch/software/bob/>`_, as a core
framework::
You should also cite `Bob`_, as a core framework, in which these bindings are
based on::
@inproceedings{Anjos_ACMMM_2012,
author = {A. Anjos AND L. El Shafey AND R. Wallace AND M. G\"unther AND C. McCool AND S. Marcel},
......@@ -62,67 +61,59 @@ framework::
Installation
------------
You can just add a dependence for ``xbob.ip.flandmark`` on your ``setup.py`` to
automatically download and have this package available at your satellite
package. This works well if Bob_ is installed centrally at your machine.
Install it through normal means, via PyPI or use ``zc.buildout`` to bootstrap
the package and run test units.
Otherwise, you will need to tell ``buildout`` how to build the package locally
and how to find Bob_. For that, just add a custom egg recipe to your
buildout that will fetch the package and compile it locally, setting the
buildout variable ``prefixes`` to where Bob_ is installed (a build directory
will work as well). For example::
Documentation
-------------
[buildout]
parts = flandmark <other parts here...>
...
prefixes = /Users/andre/work/bob/build/debug
You can generate the documentation for this package, after installation, using
Sphinx::
...
$ sphinx-build -b html doc sphinx
[flandmark]
recipe = xbob.buildout:develop
This shall place in the directory ``sphinx``, the current version for the
documentation of the package.
...
Testing
-------
Development
-----------
You can run a set of tests using the nose test runner::
To develop these bindings, you will need the open-source library Bob_ installed
somewhere. At least version 1.1 of Bob is required. If you have compiled Bob
yourself and installed it on a non-standard location, you will need to note
down the path leading to the root of that installation.
$ nosetests -sv xbob.ap
Just type::
.. warning::
$ python bootstrap.py
$ ./bin/buildout
If Bob <= 1.2.1 is installed on your python path, nose will automatically
load the old version of the insulate plugin available in Bob, which will
trigger the loading of incompatible shared libraries (from Bob itself), in
to your working binary. This will cause a stack corruption. Either remove
the centrally installed version of Bob, or build your own version of Python
in which Bob <= 1.2.1 is not installed.
If Bob is installed in a non-standard location, edit the file ``buildout.cfg``
to set the root to Bob's local installation path. Remember to use the **same
python interpreter** that was used to compile Bob_, then execute the same steps
as above.
You can run our documentation tests using sphinx itself::
Usage
-----
$ sphinx-build -b doctest doc sphinx
Pretty simple, just do something like::
You can test overall test coverage with::
import bob
from xbob import flandmark
$ nosetests --with-coverage --cover-package=xbob.ip.flandmark
video = bob.io.VideoReader('myvideo.avi')
localizer = flandmark.Localizer()
The ``coverage`` egg must be installed for this to work properly.
for frame in video:
print localizer(frame)
Development
-----------
If you already have a detected bounding box, you can plug the coordinates of the bounding box into the localizer call::
To develop this package, install using ``zc.buildout``, using the buildout
configuration found on the root of the package::
landmarks = localizer(image, top, left, height, width)
$ python bootstrap.py
...
$ ./bin/buildout
In total, 8 ``landmarks`` are returned by the localizer.
For the list and the interpretation of the landmarks, please have a look `here <http://cmp.felk.cvut.cz/~uricamic/flandmark/index.php>`_.
Tweak the options in ``buildout.cfg`` to disable/enable verbosity and debug
builds.
.. warning::
Since version 1.1 of this package, the landmarks are returned in the Bob_-typical order, which is ``(y,x)``.
Please update your code to this new behavior.
.. Place your references here:
.. _flandmark: http://cmp.felk.cvut.cz/~uricamic/flandmark/index.php
.. _bob: https://www.idiap.ch/software/bob
......@@ -12,6 +12,7 @@ develop = src/xbob.extension
src/xbob.blitz
src/xbob.io
src/xbob.ip.color
src/xbob.ip.draw
.
; options for xbob.buildout extension
......@@ -25,6 +26,7 @@ xbob.extension = git https://github.com/bioidiap/xbob.extension branch=prototype
xbob.blitz = git https://github.com/bioidiap/xbob.blitz
xbob.io = git https://github.com/bioidiap/xbob.io
xbob.ip.color = git https://github.com/bioidiap/xbob.ip.color
xbob.ip.draw = git https://github.com/bioidiap/xbob.ip.draw
[scripts]
recipe = xbob.buildout:scripts
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
# Andre Anjos <andre.anjos@idiap.ch>
# Tue 15 Oct 16:37:18 2013 CEST
#
# Copyright (C) 2011-2014 Idiap Research Institute, Martigny, Switzerland
import os
import sys
import glob
import pkg_resources
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#sys.path.insert(0, os.path.abspath('.'))
# -- General configuration -----------------------------------------------------
# If your documentation needs a minimal Sphinx version, state it here.
#needs_sphinx = '1.0'
# Add any Sphinx extension module names here, as strings. They can be extensions
# coming with Sphinx (named 'sphinx.ext.*') or your custom ones.
extensions = [
'sphinx.ext.todo',
'sphinx.ext.coverage',
'sphinx.ext.pngmath',
'sphinx.ext.ifconfig',
'sphinx.ext.autodoc',
'sphinx.ext.autosummary',
'sphinx.ext.doctest',
'sphinx.ext.intersphinx',
'matplotlib.sphinxext.plot_directive',
]
# The viewcode extension appeared only on Sphinx >= 1.0.0
import sphinx
if sphinx.__version__ >= "1.0":
extensions.append('sphinx.ext.viewcode')
# Always includes todos
todo_include_todos = True
# If we are on OSX, the 'dvipng' path maybe different
dvipng_osx = '/opt/local/libexec/texlive/binaries/dvipng'
if os.path.exists(dvipng_osx): pngmath_dvipng = dvipng_osx
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# The suffix of source filenames.
source_suffix = '.rst'
# The encoding of source files.
#source_encoding = 'utf-8-sig'
# The master toctree document.
master_doc = 'index'
# General information about the project.
project = u'xbob.ip.flandmark'
import time
copyright = u'%s, Idiap Research Institute' % time.strftime('%Y')
# Grab the setup entry
distribution = pkg_resources.require('xbob.ip.flandmark')[0]
# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
# built documents.
#
# The short X.Y version.
version = distribution.version
# The full version, including alpha/beta/rc tags.
release = distribution.version
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
#language = None
# There are two options for replacing |today|: either, you set today to some
# non-false value, then it is used:
#today = ''
# Else, today_fmt is used as the format for a strftime call.
#today_fmt = '%B %d, %Y'
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
exclude_patterns = ['links.rst']
# The reST default role (used for this markup: `text`) to use for all documents.
#default_role = None
# If true, '()' will be appended to :func: etc. cross-reference text.
#add_function_parentheses = True
# If true, the current module name will be prepended to all description
# unit titles (such as .. function::).
#add_module_names = True
# If true, sectionauthor and moduleauthor directives will be shown in the
# output. They are ignored by default.
#show_authors = False
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = 'sphinx'
# A list of ignored prefixes for module index sorting.
#modindex_common_prefix = []
# -- Options for HTML output ---------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
if sphinx.__version__ >= "1.0":
html_theme = 'nature'
# Theme options are theme-specific and customize the look and feel of a theme
# further. For a list of options available for each theme, see the
# documentation.
#html_theme_options = {}
# Add any paths that contain custom themes here, relative to this directory.
#html_theme_path = []
# The name for this set of Sphinx documents. If None, it defaults to
# "<project> v<release> documentation".
#html_title = None
# A shorter title for the navigation bar. Default is the same as html_title.
#html_short_title = 'xbob_ip_flandmark'
# The name of an image file (relative to this directory) to place at the top
# of the sidebar.
html_logo = 'img/logo.png'
# The name of an image file (within the static path) to use as favicon of the
# docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
# pixels large.
html_favicon = 'img/favicon.ico'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
#html_static_path = ['_static']
# If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
# using the given strftime format.
#html_last_updated_fmt = '%b %d, %Y'
# If true, SmartyPants will be used to convert quotes and dashes to
# typographically correct entities.
#html_use_smartypants = True
# Custom sidebar templates, maps document names to template names.
#html_sidebars = {}
# Additional templates that should be rendered to pages, maps page names to
# template names.
#html_additional_pages = {}
# If false, no module index is generated.
#html_domain_indices = True
# If false, no index is generated.
#html_use_index = True
# If true, the index is split into individual pages for each letter.
#html_split_index = False
# If true, links to the reST sources are added to the pages.
#html_show_sourcelink = True
# If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
#html_show_sphinx = True
# If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
#html_show_copyright = True
# If true, an OpenSearch description file will be output, and all pages will
# contain a <link> tag referring to it. The value of this option must be the
# base URL from which the finished HTML is served.
#html_use_opensearch = ''
# This is the file name suffix for HTML files (e.g. ".xhtml").
#html_file_suffix = None
# Output file base name for HTML help builder.
htmlhelp_basename = 'xbob_ip_flandmark_doc'
# -- Options for LaTeX output --------------------------------------------------
# The paper size ('letter' or 'a4').
latex_paper_size = 'a4'
# The font size ('10pt', '11pt' or '12pt').
latex_font_size = '10pt'
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title, author, documentclass [howto/manual]).
latex_documents = [
('index', 'xbob_ip_flandmark.tex', u'Python bindings to the Flandmark frontal-face keypoint localizer', u'Biometrics Group, Idiap Research Institute', 'manual'),
]
# The name of an image file (relative to this directory) to place at the top of
# the title page.
latex_logo = ''
# For "manual" documents, if this is true, then toplevel headings are parts,
# not chapters.
#latex_use_parts = False
# If true, show page references after internal links.
#latex_show_pagerefs = False
# If true, show URL addresses after external links.
#latex_show_urls = False
# Additional stuff for the LaTeX preamble.
#latex_preamble = ''
# Documents to append as an appendix to all manuals.
#latex_appendices = []
# If false, no module index is generated.
#latex_domain_indices = True
# Included after all input documents
rst_epilog = """
.. |project| replace:: Bob
.. |url| replace:: https://www.idiap.ch/software/bob/
.. |version| replace:: %s
.. |current-year| date:: %%Y
""" % (version,)
# -- Options for manual page output --------------------------------------------
# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [
('index', 'xbob_ip_flandmark', u'Python bindings to Flandmark frontal-face keypoint localizer', [u'Idiap Research Institute'], 1)
]
# Default processing flags for sphinx
autoclass_content = 'both'
autodoc_member_order = 'bysource'
autodoc_default_flags = ['members', 'undoc-members', 'inherited-members', 'show-inheritance']
def smaller_than(v1, v2):
"""Compares scipy/numpy version numbers"""
c1 = v1.split('.')
c2 = v2.split('.')[:len(c1)] #clip to the compared version
for i, k in enumerate(c2):
n1 = c1[i]
n2 = c2[i]
try:
n1 = int(n1)
n2 = int(n2)
except ValueError:
n1 = str(n1)
n2 = str(n2)
if n1 > n2: return False
return True
# Some name mangling to find the correct sphinx manuals for some packages
numpy_version = __import__('numpy').version.version
if smaller_than(numpy_version, '1.5.z'):
numpy_version = '.'.join(numpy_version.split('.')[:-1]) + '.x'
else:
numpy_version = '.'.join(numpy_version.split('.')[:-1]) + '.0'
numpy_manual = 'http://docs.scipy.org/doc/numpy-%s/' % numpy_version
# For inter-documentation mapping:
intersphinx_mapping = {
'http://docs.python.org/%d.%d/' % sys.version_info[:2]: None,
numpy_manual: None,
}
try:
__import__('cv2')
has_opencv = True
except ImportError:
has_opencv = False
def setup(app):
app.add_config_value('has_opencv', has_opencv, True)
.. vim: set fileencoding=utf-8 :
.. Andre Anjos <andre.dos.anjos@gmail.com>
.. Sat 16 Nov 20:52:58 2013
.. testsetup::
def get_file(f):
from os.path import join
from pkg_resources import resource_filename
return resource_filename('xbob.ip.flandmark', join('data', f))
LENA = get_file('lena.jpg')
MULTI = get_file('multi.jpg')
CASCADE = get_file('haarcascade_frontalface_alt.xml')
=============
Users Guide
=============
Flandmark detects 8 coordinates of important keypoints in **frontal** human
faces. To properly work, the keypoint localizer requires the input of an image
(of type ``uint8``, gray-scaled) and of a bounding box describing a rectangle
where the face is supposed to be located in the image (see
:py:class:`xbob.ip.flandmark.Flandmark.locate`).
The keypoints returned are, in this order:
[0]
Face center
[1]
Canthus-rl (inner corner of the right eye).
.. note::
The "right eye" means the right eye at the face w.r.t. the person on the
image. That is the left eye in the image, from the viewer's perspective.
[2]
Canthus-lr (inner corner of the left eye)
[3]
Mouth-corner-r (right corner of the mouth)
[4]
Mouth-corner-l (left corner of the mouth)
[5]
Canthus-rr (outer corner of the right eye)
[6]
Canthus-ll (outer corner of the left eye)
[7]
Nose
Each point is returned as tuple defining the pixel positions in the form
``(y, x)``.
The input bounding box describes the rectangle coordinates using 4 values:
``(y, x, height, width)``. Square bounding boxes, i.e. when ``height ==
width``, will give best results.
If you don't know the bounding box coordinates of faces on the provided image,
you will need to either manually annotate them or use an automatic face
detector. OpenCV_, if compiled with Python support, provides an easy to use
frontal face detector. The code below shall detect most frontal faces in a
provided (gray-scaled) image:
.. ifconfig:: not has_opencv
.. warning::
OpenCV for the current installation in which this manual was generated was
not compiled with Python support. The code below cannot be tested and it
may work differently than what is announced. In doubt, consult the OpenCV
guide.
.. code-block:: python
>>> from cv2 import CascadeClassifier, cv
>>> from xbob.io import load
>>> from xbob.ip.color import rgb_to_gray
>>> cc = CascadeClassifier(CASCADE) # uses 'haarcascade_frontalface_alt.xml'
>>> lena_gray = rgb_to_gray(load(LENA) # uses 'lena.jpg'
>>> face_bbxs = cc.detectMultiScale(lena_gray, 1.3, 4, 0, (20, 20))
>>> print face_bbxs
[[214, 202, 183, 183]]
.. ifconfig:: has_opencv
.. doctest::
:options: +NORMALIZE_WHITESPACE, +ELLIPSIS
>>> from cv2 import CascadeClassifier, cv
>>> from xbob.io import load
>>> from xbob.ip.color import rgb_to_gray
>>> cc = CascadeClassifier(get_file('haarcascade_frontalface_alt.xml'))
>>> lena_gray = rgb_to_gray(load(get_file('lena.jpg')))
>>> face_bbxs = cc.detectMultiScale(lena_gray, 1.3, 4, 0, (20, 20))
>>> print face_bbxs
[[214, 202, 183, 183]]
The function ``detectMultiScale`` returns OpenCV_ rectangles as 2D
:py:class:`numpy.ndarray`'s. Each row corresponds to a detected face at the
input image. Notice the format of each bounding box differs from that of Bob_.
Their format is ``(x, y, width, height)``.
Once in possession of bounding boxes for the provided, gray-scaled image, you
can find the keypoints in the following way:
.. doctest::
:options: +NORMALIZE_WHITESPACE, +ELLIPSIS
>>> x, y, width, height = [214, 202, 183, 183] #or from OpenCV
>>> from xbob.ip.flandmark import Flandmark
>>> localizer = Flandmark()
>>> keypoints = localizer.locate(lena_gray, y, x, height, width)
>>> keypoints
[[...]]
You can use the package ``xbob.ip.draw`` to draw the rectangles and keypoints
on the target image. A complete script would be something like:
.. plot:: plot/show_lena.py
:include-source: True
.. include:: links.rst
doc/img/favicon.ico

4.19 KiB

doc/img/logo.png

11 KiB

.. vim: set fileencoding=utf-8 :
.. Andre Anjos <andre.anjos@idiap.ch>
.. Thu 3 Apr 13:47:28 2014 CEST
..
.. Copyright (C) 2011-2014 Idiap Research Institute, Martigny, Switzerland
=======================================================================
Python Bindings to the Flandmark Keypoint Localizer for Frontal Faces
=======================================================================
.. todolist::
This package is a simple Python wrapper to the (rather quick) open-source
facial landmark detector `Flandmark`_, **version 1.0.7** (or the github state
as of 10/february/2013). If you use this package, the author asks you to cite
the following paper::
@inproceedings{Uricar-Franc-Hlavac-VISAPP-2012,
author = {U{\v{r}}i{\v{c}}{\'{a}}{\v{r}}, Michal and Franc, Vojt{\v{e}}ch and Hlav{\'{a}}{\v{c}}, V{\'{a}}clav},
title = {Detector of Facial Landmarks Learned by the Structured Output {SVM}},
year = {2012},
pages = {547-556},
booktitle = {VISAPP '12: Proceedings of the 7th International Conference on Computer Vision Theory and Applications},
editor = {Csurka, Gabriela and Braz, Jos{\'{e}}},
publisher = {SciTePress --- Science and Technology Publications},
address = {Portugal},
volume = {1},
isbn = {978-989-8565-03-7},
book_pages = {747},
month = {February},
day = {24-26},
venue = {Rome, Italy},
keywords = {Facial Landmark Detection, Structured Output Classification, Support Vector Machines, Deformable Part Models},
prestige = {important},
authorship = {50-40-10},
status = {published},
project = {FP7-ICT-247525 HUMAVIPS, PERG04-GA-2008-239455 SEMISOL, Czech Ministry of Education project 1M0567},
www = {http://www.visapp.visigrapp.org},
}
You should also cite `Bob`_, as a core framework, in which these bindings are
based on::
@inproceedings{Anjos_ACMMM_2012,
author = {A. Anjos AND L. El Shafey AND R. Wallace AND M. G\"unther AND C. McCool AND S. Marcel},
title = {Bob: a free signal processing and machine learning toolbox for researchers},
year = {2012},
month = oct,
booktitle = {20th ACM Conference on Multimedia Systems (ACMMM), Nara, Japan},
publisher = {ACM Press},
url = {http://publications.idiap.ch/downloads/papers/2012/Anjos_Bob_ACMMM12.pdf},
}
Documentation
-------------
.. toctree::
:maxdepth: 2
guide
py_api
Indices and tables
------------------
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`
.. include:: links.rst
.. vim: set fileencoding=utf-8 :
.. Andre Anjos <andre.anjos@idiap.ch>
.. Tue 20 Mar 2012 08:57:32 CET
..
.. Copyright (C) 2011-2014 Idiap Research Institute, Martigny, Switzerland
.. This file contains all links we use for documentation in a centralized place
.. Place here references to all citations in lower case
.. _argparse: http://code.google.com/p/argparse/
.. _blitz++: http://www.oonumerics.org/blitz
.. _bob's idiap guide: http://github.com/idiap/bob/wiki/Using-Bob-at-Idiap
.. _bob's website: https://www.idiap.ch/software/bob
.. _bob: https://www.idiap.ch/software/bob
.. _boost: http://www.boost.org
.. _buildbot: http://trac.buildbot.net
.. _buildout: http://pypi.python.org/pypi/zc.buildout/
.. _c++: http://www2.research.att.com/~bs/C++.html
.. _cmake: http://www.cmake.org
.. _doxygen: http://www.doxygen.org
.. _dvipng: http://savannah.nongnu.org/projects/dvipng/
.. _ffmpeg: http://ffmpeg.org
.. _libav: http://libav.org
.. _fftw: http://www.fftw.org/
.. _fink: http://www.finkproject.org
.. _git: http://git-scm.com/
.. _github: http://github.com/
.. _google perftools: http://code.google.com/p/google-perftools
.. _hdf5: http://www.hdfgroup.org/HDF5
.. _idiap: http://www.idiap.ch
.. _ipython: http://ipython.scipy.org
.. _lapack: http://www.netlib.org/lapack
.. _latex: http://www.latex-project.org/
.. _libjpeg: http://libjpeg.sourceforge.net/
.. _libnetpbm: http://netpbm.sourceforge.net/doc/libnetpbm.html
.. _libpng: http://libpng.org/pub/png/libpng.html
.. _libsvm: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
.. _libtiff: http://www.remotesensing.org/libtiff/
.. _giflib: http://giflib.sourceforge.net/
.. _macports installation instructions: http://www.macports.org/install.php
.. _macports: http://www.macports.org
.. _matio: http://matio.sourceforge.net
.. _matlab: http://www.mathworks.ch/products/matlab/
.. _matplotlib: http://matplotlib.sourceforge.net
.. _numpy: http://numpy.scipy.org
.. _nose: http://nose.readthedocs.org
.. _opencv: http://opencv.org/
.. _pil: http://www.pythonware.com/products/pil/
.. _pillow: https://pypi.python.org/pypi/Pillow/
.. _python: http://www.python.org
.. _pypi: http://pypi.python.org
.. _qt4: http://qt.nokia.com/
.. _satellite packages: https://github.com/idiap/bob/wiki/Satellite-Packages
.. _scipy: http://www.scipy.org
.. _setuptools: http://trac.edgewall.org/wiki/setuptools
.. _sphinx: http://sphinx.pocoo.org
.. _sqlalchemy: http://www.sqlalchemy.org/
.. _sqlite: http://www.sqlite.org/
.. _submit a new bug report: https://github.com/idiap/bob/issues
.. _torch 3 vision: http://torch3vision.idiap.ch
.. _torch 3: http://www.torch.ch
.. _torch 5: http://torch5.sourceforge.net
.. _torch: https://github.com/andresy/torch
.. _vlfeat launchpad webpage: https://launchpad.net/~gezakovacs/+archive/vlfeat
.. _vlfeat: http://www.vlfeat.org/
.. _flandmark: http://cmp.felk.cvut.cz/~uricamic/flandmark/index.php
.. Place here references to licenses
.. _apache-2.0: http://www.opensource.org/licenses/Apache-2.0
.. _artistic-2.0: http://www.opensource.org/licenses/Artistic-2.0
.. _bsd-2-clause: http://www.opensource.org/licenses/BSD-2-Clause
.. _bsd-3-clause: http://www.opensource.org/licenses/BSD-3-Clause
.. _bsl-1.0: http://www.opensource.org/licenses/BSL-1.0
.. _gpl-2.0: http://www.opensource.org/licenses/GPL-2.0
.. _gpl-3.0: http://www.opensource.org/licenses/GPL-3.0
.. _hdf5 license: ftp://ftp.hdfgroup.org/HDF5/current/src/unpacked/COPYING
.. _lgpl-2.1: http://www.opensource.org/licenses/LGPL-2.1
.. _libpng license: http://www.libpng.org/pub/png/src/libpng-LICENSE.txt
.. _mit: http://www.opensource.org/licenses/MIT
.. _python-2.0: http://www.opensource.org/licenses/Python-2.0
from matplotlib import pyplot
from xbob.ip.flandmark import Flandmark
from xbob.ip.draw import box, cross
from xbob.ip.color import rgb_to_gray
def get_data(f):
from os.path import join
from pkg_resources import resource_filename
from xbob.io import load
return load(resource_filename('xbob.ip.flandmark', join('data', f)))
lena = get_data('lena.jpg')
lena_gray = rgb_to_gray(lena)
x, y, width, height = [214, 202, 183, 183] #or from OpenCV
localizer = Flandmark()
keypoints = localizer.locate(lena_gray, y, x, height, width)
# draw the keypoints and bounding box
box(lena, (y, x), (height, width), (255, 0, 0)) # red bounding box
for k in keypoints:
cross(lena, k.astype(int), 5, (255, 255, 0)) # yellow key points
pyplot.imshow(lena.transpose(1, 2, 0))
.. vim: set fileencoding=utf-8 :
.. Andre Anjos <andre.dos.anjos@gmail.com>
.. Sat 16 Nov 20:52:58 2013
============
Python API
============
This section includes information for using the pure Python API of
``xbob.ip.flandmark``.
.. automodule:: xbob.ip.flandmark
......@@ -36,6 +36,8 @@ setup(
'xbob.blitz',
'xbob.io', #for tests
'xbob.ip.color', #for tests
'xbob.ip.draw', #for doc generation
'matplotlib', #for doc generation
],
namespace_packages=[
......@@ -43,12 +45,6 @@ setup(
"xbob.ip",
],
entry_points = {
'console_scripts': [
'xbob_flandmark.py = xbob.flandmark.script.annotate:main',
],
},
ext_modules=[
Extension("xbob.ip.flandmark.version",
[
......
......@@ -174,7 +174,9 @@ static auto s_call = xbob::extension::FunctionDoc(
"\n"
"0. Face center\n"
"1. Canthus-rl (inner corner of the right eye).\n"
"\n"
" .. note::\n"
" \n"
" The \"right eye\" means the right eye at the face w.r.t. the person "
"on the image. That is the left eye in the image, from the viewer's "
"perspective.\n"
......
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
# Andre Anjos <andre.anjos@idiap.ch>
# Fri 21 Sep 2012 10:43:12 CEST
"""Annotates videos, dumps annotations as text files.
The text files will contain one line per annotated frame. Each line contains a
single detected face and associated landmarks. Only the biggest detection found
on the frame is considered. The entries in each line are:
[0]
The frame number (starting from 0)
[1:5] 4 items
The bounding-box coordinates as detected by OpenCV (x, y, width, height)
[5:] 8 pairs
Each pair corresponds to a keypoint in the order defined by the model:
[5:7]
Face center (as defined by the OpenCV detected bounding box)
[7:9]
Canthus-rl (inner corner of the right eye). Note: The "right eye" means
the right eye at face w.r.t. itself - that is the left eye in the image.
[9:11]
Canthus-lr (inner corder of the left eye)
[11:13]
Mouth-corner-r (right corner of the mouth)
[13:15]
Mouth-corner-l (left corner of the mouth)
[15:17]
Canthus-rr (outer corner of the right eye)
[17:19]
Canthus-ll (outer corner of the left eye)
[19:21]
Nose
If no faces are found on the frame, the line will only display an invalid
bounding box with zeros, e.g. `327 0 0 0 0`. No landmarks will be displayed in
this case.
"""
import os
import sys
import bob
from .. import Localizer
import pkg_resources
def get_biggest(dets):
"""Returns the biggest detection found"""
retval = dets[0]
for d in dets[1:]:
if retval['bbox'][2] < d['bbox'][2]: retval = d
return retval
def main():
import argparse
parser = argparse.ArgumentParser(description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('video', metavar='VIDEO', type=str,
help="Video file to load")
parser.add_argument('output', metavar='OUTPUT', type=str,
default=None, nargs='?',
help="If you prefer the output diverged to a file, enter this argument")
parser.add_argument('-v', '--verbose', default=False, action='store_true',
help="Increases the output verbosity level")
from ..version import __version__
name = os.path.basename(os.path.splitext(sys.argv[0])[0])
parser.add_argument('-V', '--version', action='version',
version='Automatic Video Keypoint Annotation Tool v%s (%s)' % (__version__, name))
args = parser.parse_args()
if not os.path.exists(args.video):
parser.error("Input video file '%s' cannot be read" % args.video)
output = sys.stdout
if args.output is not None:
dirname = os.path.dirname(args.output)
if dirname and not os.path.exists(dirname):
try:
os.makedirs(dirname)
except OSError as exc:
import errno
if exc.errno == errno.EEXIST: pass
else: raise
output = open(args.output, 'wt')
op = Localizer()
v = bob.io.VideoReader(args.video)
if args.verbose and args.output is not None:
print "Locating faces in %d frames" % len(v),
for k, frame in enumerate(v):
dets = op(frame)
if dets:
biggest = get_biggest(dets)
bbox = biggest['bbox']
landmarks = biggest['landmark']
output.write("%d %d %d %d %d " % ((k,) + bbox))
lstr = " ".join("%d %d" % (round(p[1]), round(p[0])) for p in landmarks)
output.write(lstr + "\n")
if args.verbose and args.output is not None:
sys.stdout.write('.')
sys.stdout.flush()
else:
output.write("%d 0 0 0 0\n" % k)
if args.verbose and args.output is not None:
sys.stdout.write('x')
sys.stdout.flush()
if args.verbose and args.output is not None:
sys.stdout.write('\n')
sys.stdout.flush()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment