Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.ip.facedetect
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
bob
bob.ip.facedetect
Commits
48c7cb79
Commit
48c7cb79
authored
4 years ago
by
Tiago de Freitas Pereira
Browse files
Options
Downloads
Patches
Plain Diff
Removed unecessary file
parent
b1d1c7d4
Branches
Branches containing commit
Tags
Tags containing commit
1 merge request
!16
Tinyfacedetect
Pipeline
#51061
passed
4 years ago
Stage: build
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
doc/plot/detect_code_tinyface.py
+0
-222
0 additions, 222 deletions
doc/plot/detect_code_tinyface.py
with
0 additions
and
222 deletions
doc/plot/detect_code_tinyface.py
deleted
100644 → 0
+
0
−
222
View file @
b1d1c7d4
import
mxnet
as
mx
from
mxnet
import
gluon
from
bob.ip.color
import
gray_to_rgb
import
logging
import
numpy
as
np
import
cv2
as
cv
import
pickle
import
os
,
sys
from
collections
import
namedtuple
import
time
from
bob.io.image
import
to_matplotlib
import
pkg_resources
from
bob.extension
import
rc
from
bob.bio.face.embeddings
import
download_model
logger
=
logging
.
getLogger
(
__name__
)
Batch
=
namedtuple
(
'
Batch
'
,
[
'
data
'
])
class
TinyFacesDetector
:
"""
TinyFace face detector. Original Model is ``ResNet101`` from
https://github.com/peiyunh/tiny. Please check for details. The
model used in this section is the MxNet version from
https://github.com/chinakook/hr101_mxnet.
Attributes
----------
prob_thresh: float
Thresholds are a trade-off between false positives and missed detections.
"""
def
__init__
(
self
,
prob_thresh
=
0.5
):
internal_path
=
pkg_resources
.
resource_filename
(
__name__
,
os
.
path
.
join
(
"
data
"
,
"
tinyface_detector/tinyface_detector
"
),
)
checkpoint_path
=
(
internal_path
if
rc
[
"
bob.bio.face.models.tinyface_detector
"
]
is
None
else
rc
[
"
bob.bio.face.models.tinyface_detector
"
]
)
urls
=
[
"
https://www.idiap.ch/software/bob/data/bob/bob.ip.facedetect/master/tinyface_detector.tar.gz
"
]
download_model
(
checkpoint_path
,
urls
,
"
tinyface_detector.tar.gz
"
)
self
.
checkpoint_path
=
checkpoint_path
self
.
MAX_INPUT_DIM
=
5000.0
self
.
prob_thresh
=
prob_thresh
self
.
nms_thresh
=
0.1
self
.
model_root
=
pkg_resources
.
resource_filename
(
__name__
,
self
.
checkpoint_path
)
sym
,
arg_params
,
aux_params
=
mx
.
model
.
load_checkpoint
(
os
.
path
.
join
(
self
.
checkpoint_path
,
'
hr101
'
),
0
)
all_layers
=
sym
.
get_internals
()
meta_file
=
open
(
os
.
path
.
join
(
self
.
checkpoint_path
,
'
meta.pkl
'
),
'
rb
'
)
self
.
clusters
=
pickle
.
load
(
meta_file
)
self
.
averageImage
=
pickle
.
load
(
meta_file
)
meta_file
.
close
()
self
.
clusters_h
=
self
.
clusters
[:,
3
]
-
self
.
clusters
[:,
1
]
+
1
self
.
clusters_w
=
self
.
clusters
[:,
2
]
-
self
.
clusters
[:,
0
]
+
1
self
.
normal_idx
=
np
.
where
(
self
.
clusters
[:,
4
]
==
1
)
self
.
mod
=
mx
.
mod
.
Module
(
symbol
=
all_layers
[
'
fusex_output
'
],
data_names
=
[
'
data
'
],
label_names
=
None
)
self
.
mod
.
bind
(
for_training
=
False
,
data_shapes
=
[(
'
data
'
,
(
1
,
3
,
224
,
224
))],
label_shapes
=
None
,
force_rebind
=
False
)
self
.
mod
.
set_params
(
arg_params
=
arg_params
,
aux_params
=
aux_params
,
force_init
=
False
)
@staticmethod
def
_nms
(
dets
,
prob_thresh
):
x1
=
dets
[:,
0
]
y1
=
dets
[:,
1
]
x2
=
dets
[:,
2
]
y2
=
dets
[:,
3
]
scores
=
dets
[:,
4
]
areas
=
(
x2
-
x1
+
1
)
*
(
y2
-
y1
+
1
)
order
=
scores
.
argsort
()[::
-
1
]
keep
=
[]
while
order
.
size
>
0
:
i
=
order
[
0
]
keep
.
append
(
i
)
xx1
=
np
.
maximum
(
x1
[
i
],
x1
[
order
[
1
:]])
yy1
=
np
.
maximum
(
y1
[
i
],
y1
[
order
[
1
:]])
xx2
=
np
.
minimum
(
x2
[
i
],
x2
[
order
[
1
:]])
yy2
=
np
.
minimum
(
y2
[
i
],
y2
[
order
[
1
:]])
w
=
np
.
maximum
(
0.0
,
xx2
-
xx1
+
1
)
h
=
np
.
maximum
(
0.0
,
yy2
-
yy1
+
1
)
inter
=
w
*
h
ovr
=
inter
/
(
areas
[
i
]
+
areas
[
order
[
1
:]]
-
inter
)
inds
=
np
.
where
(
ovr
<=
prob_thresh
)[
0
]
order
=
order
[
inds
+
1
]
return
keep
def
detect
(
self
,
img
):
"""
Detects and annotates all faces in the image.
Parameters
----------
image : numpy.ndarray
An RGB image in Bob format.
Returns
-------
list
A list of annotations. Annotations are dictionaries that contain the
following keys: ``topleft``, ``bottomright``, ``reye``, ``leye``.
(``reye`` and ``leye`` are the estimated results, not captured by the
model.)
"""
raw_img
=
img
if
len
(
raw_img
.
shape
)
==
2
:
raw_img
=
gray_to_rgb
(
raw_img
)
assert
img
.
shape
[
0
]
==
3
,
img
.
shape
raw_img
=
to_matplotlib
(
raw_img
)
raw_img
=
raw_img
[...,
::
-
1
]
raw_h
=
raw_img
.
shape
[
0
]
raw_w
=
raw_img
.
shape
[
1
]
raw_img
=
cv
.
cvtColor
(
raw_img
,
cv
.
COLOR_BGR2RGB
)
raw_img_f
=
raw_img
.
astype
(
np
.
float32
)
min_scale
=
min
(
np
.
floor
(
np
.
log2
(
np
.
max
(
self
.
clusters_w
[
self
.
normal_idx
]
/
raw_w
))),
np
.
floor
(
np
.
log2
(
np
.
max
(
self
.
clusters_h
[
self
.
normal_idx
]
/
raw_h
))))
max_scale
=
min
(
1.0
,
-
np
.
log2
(
max
(
raw_h
,
raw_w
)
/
self
.
MAX_INPUT_DIM
))
scales_down
=
np
.
arange
(
min_scale
,
0
+
0.0001
,
1.
)
scales_up
=
np
.
arange
(
0.5
,
max_scale
+
0.0001
,
0.5
)
scales_pow
=
np
.
hstack
((
scales_down
,
scales_up
))
scales
=
np
.
power
(
2.0
,
scales_pow
)
start
=
time
.
time
()
bboxes
=
np
.
empty
(
shape
=
(
0
,
5
))
for
s
in
scales
[::
-
1
]:
img
=
cv
.
resize
(
raw_img_f
,
(
0
,
0
),
fx
=
s
,
fy
=
s
)
img
=
np
.
transpose
(
img
,(
2
,
0
,
1
))
img
=
img
-
self
.
averageImage
tids
=
[]
if
s
<=
1.
:
tids
=
list
(
range
(
4
,
12
))
else
:
tids
=
list
(
range
(
4
,
12
))
+
list
(
range
(
18
,
25
))
ignoredTids
=
list
(
set
(
range
(
0
,
self
.
clusters
.
shape
[
0
]))
-
set
(
tids
))
img_h
=
img
.
shape
[
1
]
img_w
=
img
.
shape
[
2
]
img
=
img
[
np
.
newaxis
,
:]
self
.
mod
.
reshape
(
data_shapes
=
[(
'
data
'
,
(
1
,
3
,
img_h
,
img_w
))])
self
.
mod
.
forward
(
Batch
([
mx
.
nd
.
array
(
img
)]))
self
.
mod
.
get_outputs
()[
0
].
wait_to_read
()
fusex_res
=
self
.
mod
.
get_outputs
()[
0
]
score_cls
=
mx
.
nd
.
slice_axis
(
fusex_res
,
axis
=
1
,
begin
=
0
,
end
=
25
,
name
=
'
score_cls
'
)
score_reg
=
mx
.
nd
.
slice_axis
(
fusex_res
,
axis
=
1
,
begin
=
25
,
end
=
None
,
name
=
'
score_reg
'
)
prob_cls
=
mx
.
nd
.
sigmoid
(
score_cls
)
prob_cls_np
=
prob_cls
.
asnumpy
()
prob_cls_np
[
0
,
ignoredTids
,:,:]
=
0.
_
,
fc
,
fy
,
fx
=
np
.
where
(
prob_cls_np
>
self
.
prob_thresh
)
cy
=
fy
*
8
-
1
cx
=
fx
*
8
-
1
ch
=
self
.
clusters
[
fc
,
3
]
-
self
.
clusters
[
fc
,
1
]
+
1
cw
=
self
.
clusters
[
fc
,
2
]
-
self
.
clusters
[
fc
,
0
]
+
1
Nt
=
self
.
clusters
.
shape
[
0
]
score_reg_np
=
score_reg
.
asnumpy
()
tx
=
score_reg_np
[
0
,
0
:
Nt
,
:,
:]
ty
=
score_reg_np
[
0
,
Nt
:
2
*
Nt
,:,:]
tw
=
score_reg_np
[
0
,
2
*
Nt
:
3
*
Nt
,:,:]
th
=
score_reg_np
[
0
,
3
*
Nt
:
4
*
Nt
,:,:]
dcx
=
cw
*
tx
[
fc
,
fy
,
fx
]
dcy
=
ch
*
ty
[
fc
,
fy
,
fx
]
rcx
=
cx
+
dcx
rcy
=
cy
+
dcy
rcw
=
cw
*
np
.
exp
(
tw
[
fc
,
fy
,
fx
])
rch
=
ch
*
np
.
exp
(
th
[
fc
,
fy
,
fx
])
score_cls_np
=
score_cls
.
asnumpy
()
scores
=
score_cls_np
[
0
,
fc
,
fy
,
fx
]
tmp_bboxes
=
np
.
vstack
((
rcx
-
rcw
/
2
,
rcy
-
rch
/
2
,
rcx
+
rcw
/
2
,
rcy
+
rch
/
2
))
tmp_bboxes
=
np
.
vstack
((
tmp_bboxes
/
s
,
scores
))
tmp_bboxes
=
tmp_bboxes
.
transpose
()
bboxes
=
np
.
vstack
((
bboxes
,
tmp_bboxes
))
refind_idx
=
self
.
_nms
(
bboxes
,
self
.
nms_thresh
)
refind_bboxes
=
bboxes
[
refind_idx
]
refind_bboxes
=
refind_bboxes
.
astype
(
np
.
int32
)
annotations
=
refind_bboxes
annots
=
[]
for
i
in
range
(
len
(
refind_bboxes
)):
topleft
=
float
(
annotations
[
i
][
1
]),
float
(
annotations
[
i
][
0
])
bottomright
=
float
(
annotations
[
i
][
3
]),
float
(
annotations
[
i
][
2
])
width
=
float
(
annotations
[
i
][
2
])
-
float
(
annotations
[
i
][
0
])
length
=
float
(
annotations
[
i
][
3
])
-
float
(
annotations
[
i
][
1
])
right_eye
=
(
0.37
)
*
length
+
float
(
annotations
[
i
][
1
]),(
0.3
)
*
width
+
float
(
annotations
[
i
][
0
])
left_eye
=
(
0.37
)
*
length
+
float
(
annotations
[
i
][
1
]),(
0.7
)
*
width
+
float
(
annotations
[
i
][
0
])
annots
.
append
(
{
"
topleft
"
:
topleft
,
"
bottomright
"
:
bottomright
,
"
reye
"
:
right_eye
,
"
leye
"
:
left_eye
,
}
)
return
annots
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment