Skip to content
Snippets Groups Projects
Commit 8db5e451 authored by Amir Mohammadi's avatar Amir Mohammadi
Browse files

Update the documentation

parent 4b195a6a
No related branches found
No related tags found
1 merge request!2First Alpha release
Pipeline #
bob package
===========
Subpackages
-----------
.. toctree::
bob.fusion
Module contents
---------------
.. automodule:: bob
:members:
:undoc-members:
:show-inheritance:
......@@ -247,6 +247,8 @@ if os.path.exists(sphinx_requirements):
else:
intersphinx_mapping = link_documentation()
# add scikit-learn intersphinx mapping
intersphinx_mapping['http://scikit-learn.org/stable/'] = None
# We want to remove all private (i.e. _. or __.__) members
# that are not in the list of accepted functions
......
.. vim: set fileencoding=utf-8 :
.. author: Amir Mohammadi <amir.mohammadi@idiap.ch>
.. _bob.fusion.base.fusion:
===========================================================
Running Score Fusion in Biometric Recognition Experiments
===========================================================
==========================================================
Running Score Fusion in Biometric Recognition Experiments
==========================================================
Each score fusion experiment requires at least a classifier.
The ``bob.fusion.base`` package itself implements three such classifiers: ``MLP``, ``LLR`` and ``WeightedSum``.
You can also use any class as a classifier that implements a ``fit(X[, y])`` and a ``decision_function(X)`` method.
An example is `sklearn.linear_model.LogisticRegression <http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html>`_.
You can also use pre-processors to pre-process your data. The pre-processor class should implement a ``fit_transform(X[, y])`` and a ``transform(X[, y, copy])`` methods. An example is `sklearn.preprocessing.StandardScaler <http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html>`_.
Using ``sklearn`` classifiers and pre-processors you can implement different fusion algorithms. Please take a look at some examples in ``bob.fusion.base.config.algorithm`` to see how it is done.
There are two scripts available in the package as of now and they work for verification scenarios.
Spoofing and Anti-spoofing scenarios are not considered yet **in the scripts** however the Python API allows for easy extension.
Also take a look at the scripts ``bob_fuse.py`` and ``bob_fusion_decision_boundary.py`` and use them for your actual fusion experiments.
.. todo:: write user guide.
.. include:: links.rst
......@@ -7,40 +7,17 @@
Score Fusion in Biometric Recognition Experiments
===================================================
The ``bob.fusion.base`` package provides open source tools to run comparable and reproducible score fusion in biometric recognition experiments.
This package provides open source tools to run comparable and reproducible score
fusion in biometric recognition experiments. It is written to be tightly
integrated with bob_ and scikit-learn_. However you do not neccessairly need
scikit-learn_ to use this package.
It is written to be tightly integrated with ``scikit-learn`` however you do not need to use it neccessairly.
===========
Users Guide
===========
.. toctree::
:maxdepth: 2
guide
py_api
================
Reference Manual
================
.. toctree::
:maxdepth: 2
* :ref:`modindex`
==========
References
==========
==================
Indices and tables
==================
* :ref:`genindex`
* :ref:`search`
.. include:: links.rst
.. vim: set fileencoding=utf-8 :
.. author: Manuel Günther <manuel.guenther@idiap.ch>
.. date: Thu Sep 20 11:58:57 CEST 2012
.. This file contains all links we use for documentation in a centralized place
.. _idiap: http://www.idiap.ch
.. _github: http://www.github.com/idiap
.. _bob: http://www.idiap.ch/software/bob
.. _github bug reporting system: http://github.com/bioidiap/bob.bio.base/issues
.. _idiap at github: http://www.github.com/bioidiap
.. _at&t database: http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
.. _bob's github page: http://idiap.github.com/bob
.. _gridtk: http://github.com/idiap/gridtk
.. _buildout: http://www.buildout.org
.. _setuptools: http://trac.edgewall.org/wiki/setuptools
.. _nist: http://www.nist.gov/itl/iad/ig/focs.cfm
.. _pypi: http://pypi.python.org
.. _sge: http://wiki.idiap.ch/linux/SunGridEngine
.. _csu face recognition resources: http://www.cs.colostate.edu/facerec
.. _xfacereclib.extension.csu: http://pypi.python.org/pypi/xfacereclib.extension.CSU
.. _virtualbox: https://www.virtualbox.org
.. _hdf5: http://www.hdfgroup.org/HDF5
.. _mailing list: https://www.idiap.ch/software/bob/discuss
.. _scikit-learn: http://scikit-learn.org
bob.fusion.base
===============
.. toctree::
:maxdepth: 4
bob
==========
Python API
==========
This section includes information for using the Python API of
``bob.fusion.base``.
=================
Fusion Algorithms
=================
.. automodule:: bob.fusion.base.algorithm
:members:
:undoc-members:
==============
Fusion Scripts
==============
.. automodule:: bob.fusion.base.script
:members:
:undoc-members:
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment