Skip to content
Snippets Groups Projects
Commit 39960743 authored by André Anjos's avatar André Anjos :speech_balloon:
Browse files

More tests for preprocessor specific stages

parent 6026bd8b
No related branches found
No related tags found
1 merge request!353DFV and multiple fixes
...@@ -14,7 +14,6 @@ the generated sphinx documentation) ...@@ -14,7 +14,6 @@ the generated sphinx documentation)
import os import os
import numpy import numpy
import numpy as np
import nose.tools import nose.tools
import pkg_resources import pkg_resources
...@@ -32,7 +31,71 @@ def F(parts): ...@@ -32,7 +31,71 @@ def F(parts):
return pkg_resources.resource_filename(__name__, os.path.join(*parts)) return pkg_resources.resource_filename(__name__, os.path.join(*parts))
def test_finger_crop(): def test_cropping():
# tests if the cropping stage at preprocessors works as planned
from ..preprocessor.crop import FixedCrop, NoCrop
shape = (20, 17)
test_image = numpy.random.randint(0, 1000, size=shape, dtype=int)
dont_crop = NoCrop()
cropped = dont_crop(test_image)
nose.tools.eq_(test_image.shape, cropped.shape)
nose.tools.eq_((test_image-cropped).sum(), 0)
top = 5; bottom = 2; left=3; right=7
fixed_crop = FixedCrop(top, bottom, left, right)
cropped = fixed_crop(test_image)
nose.tools.eq_(cropped.shape, (shape[0]-(top+bottom), shape[1]-(left+right)))
nose.tools.eq_((test_image[top:-bottom,left:-right]-cropped).sum(), 0)
def test_masking():
# tests if the masking stage at preprocessors work as planned
from ..preprocessor.mask import FixedMask, NoMask, AnnotatedRoIMask
from ..database import AnnotatedArray
shape = (17, 20)
test_image = numpy.random.randint(0, 1000, size=shape, dtype=int)
masker = NoMask()
mask = masker(test_image)
nose.tools.eq_(mask.dtype, numpy.dtype('bool'))
nose.tools.eq_(mask.shape, test_image.shape)
nose.tools.eq_(mask.sum(), numpy.prod(shape))
top = 4; bottom = 2; left=3; right=1
masker = FixedMask(top, bottom, left, right)
mask = masker(test_image)
nose.tools.eq_(mask.dtype, numpy.dtype('bool'))
nose.tools.eq_(mask.sum(), (shape[0]-(top+bottom)) * (shape[1]-(left+right)))
nose.tools.eq_(mask[top:-bottom,left:-right].sum(), mask.sum())
# this matches the previous "fixed" mask - notice we consider the pixels
# under the polygon line to be **part** of the RoI (mask position == True)
shape = (10, 10)
test_image = numpy.random.randint(0, 1000, size=shape, dtype=int)
annotations = [
(top, left),
(top, shape[1]-(right+1)),
(shape[0]-(bottom+1), shape[1]-(right+1)),
(shape[0]-(bottom+1), left),
]
image = AnnotatedArray(test_image, metadata=dict(roi=annotations))
masker = AnnotatedRoIMask()
mask = masker(image)
nose.tools.eq_(mask.dtype, numpy.dtype('bool'))
nose.tools.eq_(mask.sum(), (shape[0]-(top+bottom)) * (shape[1]-(left+right)))
nose.tools.eq_(mask[top:-bottom,left:-right].sum(), mask.sum())
def test_preprocessor():
# tests the whole preprocessing mechanism, compares to matlab source
input_filename = F(('preprocessors', '0019_3_1_120509-160517.png')) input_filename = F(('preprocessors', '0019_3_1_120509-160517.png'))
output_img_filename = F(('preprocessors', output_img_filename = F(('preprocessors',
...@@ -42,11 +105,11 @@ def test_finger_crop(): ...@@ -42,11 +105,11 @@ def test_finger_crop():
img = bob.io.base.load(input_filename) img = bob.io.base.load(input_filename)
from bob.bio.vein.preprocessor import Preprocessor, NoCropper, LeeMask, \ from ..preprocessor import Preprocessor, NoCrop, LeeMask, \
HuangNormalization, NoFilter HuangNormalization, NoFilter
processor = Preprocessor( processor = Preprocessor(
NoCropper(), NoCrop(),
LeeMask(filter_height=40, filter_width=4), LeeMask(filter_height=40, filter_width=4),
HuangNormalization(padding_width=0, padding_constant=0), HuangNormalization(padding_width=0, padding_constant=0),
NoFilter(), NoFilter(),
...@@ -83,7 +146,7 @@ def test_max_curvature(): ...@@ -83,7 +146,7 @@ def test_max_curvature():
bin_ref = bin_ref.T bin_ref = bin_ref.T
# Apply Python implementation # Apply Python implementation
from bob.bio.vein.extractor.MaximumCurvature import MaximumCurvature from ..extractor.MaximumCurvature import MaximumCurvature
MC = MaximumCurvature(3) #value used to create references MC = MaximumCurvature(3) #value used to create references
kappa = MC.detect_valleys(image, mask) kappa = MC.detect_valleys(image, mask)
...@@ -113,10 +176,10 @@ def test_max_curvature_HE(): ...@@ -113,10 +176,10 @@ def test_max_curvature_HE():
input_img = bob.io.base.load(input_img_filename) input_img = bob.io.base.load(input_img_filename)
# Preprocess the data and apply Histogram Equalization postprocessing (same parameters as in maximum_curvature.py configuration file + postprocessing) # Preprocess the data and apply Histogram Equalization postprocessing (same parameters as in maximum_curvature.py configuration file + postprocessing)
from bob.bio.vein.preprocessor import Preprocessor, NoCropper, LeeMask, \ from ..preprocessor import Preprocessor, NoCrop, LeeMask, \
HuangNormalization, HistogramEqualization HuangNormalization, HistogramEqualization
processor = Preprocessor( processor = Preprocessor(
NoCropper(), NoCrop(),
LeeMask(filter_height=40, filter_width=4), LeeMask(filter_height=40, filter_width=4),
HuangNormalization(padding_width=0, padding_constant=0), HuangNormalization(padding_width=0, padding_constant=0),
HistogramEqualization(), HistogramEqualization(),
...@@ -124,7 +187,7 @@ def test_max_curvature_HE(): ...@@ -124,7 +187,7 @@ def test_max_curvature_HE():
preproc_data = processor(input_img) preproc_data = processor(input_img)
# Extract features from preprocessed and histogram equalized data using MC extractor (same parameters as in maximum_curvature.py configuration file) # Extract features from preprocessed and histogram equalized data using MC extractor (same parameters as in maximum_curvature.py configuration file)
from bob.bio.vein.extractor.MaximumCurvature import MaximumCurvature from ..extractor.MaximumCurvature import MaximumCurvature
MC = MaximumCurvature(sigma = 5) MC = MaximumCurvature(sigma = 5)
extr_data = MC(preproc_data) extr_data = MC(preproc_data)
#preprocessor_utils.show_image((255.*extr_data).astype('uint8')) #preprocessor_utils.show_image((255.*extr_data).astype('uint8'))
...@@ -143,7 +206,7 @@ def test_repeated_line_tracking(): ...@@ -143,7 +206,7 @@ def test_repeated_line_tracking():
input_fvr = bob.io.base.load(input_fvr_filename) input_fvr = bob.io.base.load(input_fvr_filename)
# Apply Python implementation # Apply Python implementation
from bob.bio.vein.extractor.RepeatedLineTracking import RepeatedLineTracking from ..extractor.RepeatedLineTracking import RepeatedLineTracking
RLT = RepeatedLineTracking(3000, 1, 21, False) RLT = RepeatedLineTracking(3000, 1, 21, False)
output_img = RLT((input_img, input_fvr)) output_img = RLT((input_img, input_fvr))
...@@ -163,10 +226,10 @@ def test_repeated_line_tracking_HE(): ...@@ -163,10 +226,10 @@ def test_repeated_line_tracking_HE():
input_img = bob.io.base.load(input_img_filename) input_img = bob.io.base.load(input_img_filename)
# Preprocess the data and apply Histogram Equalization postprocessing (same parameters as in repeated_line_tracking.py configuration file + postprocessing) # Preprocess the data and apply Histogram Equalization postprocessing (same parameters as in repeated_line_tracking.py configuration file + postprocessing)
from bob.bio.vein.preprocessor import Preprocessor, NoCropper, LeeMask, \ from ..preprocessor import Preprocessor, NoCrop, LeeMask, \
HuangNormalization, HistogramEqualization HuangNormalization, HistogramEqualization
processor = Preprocessor( processor = Preprocessor(
NoCropper(), NoCrop(),
LeeMask(filter_height=40, filter_width=4), LeeMask(filter_height=40, filter_width=4),
HuangNormalization(padding_width=0, padding_constant=0), HuangNormalization(padding_width=0, padding_constant=0),
HistogramEqualization(), HistogramEqualization(),
...@@ -174,7 +237,7 @@ def test_repeated_line_tracking_HE(): ...@@ -174,7 +237,7 @@ def test_repeated_line_tracking_HE():
preproc_data = processor(input_img) preproc_data = processor(input_img)
# Extract features from preprocessed and histogram equalized data using RLT extractor (same parameters as in repeated_line_tracking.py configuration file) # Extract features from preprocessed and histogram equalized data using RLT extractor (same parameters as in repeated_line_tracking.py configuration file)
from bob.bio.vein.extractor.RepeatedLineTracking import RepeatedLineTracking from ..extractor.RepeatedLineTracking import RepeatedLineTracking
# Maximum number of iterations # Maximum number of iterations
NUMBER_ITERATIONS = 3000 NUMBER_ITERATIONS = 3000
# Distance between tracking point and cross section of profile # Distance between tracking point and cross section of profile
...@@ -198,7 +261,7 @@ def test_wide_line_detector(): ...@@ -198,7 +261,7 @@ def test_wide_line_detector():
input_fvr = bob.io.base.load(input_fvr_filename) input_fvr = bob.io.base.load(input_fvr_filename)
# Apply Python implementation # Apply Python implementation
from bob.bio.vein.extractor.WideLineDetector import WideLineDetector from ..extractor.WideLineDetector import WideLineDetector
WL = WideLineDetector(5, 1, 41, False) WL = WideLineDetector(5, 1, 41, False)
output_img = WL((input_img, input_fvr)) output_img = WL((input_img, input_fvr))
...@@ -217,10 +280,10 @@ def test_wide_line_detector_HE(): ...@@ -217,10 +280,10 @@ def test_wide_line_detector_HE():
input_img = bob.io.base.load(input_img_filename) input_img = bob.io.base.load(input_img_filename)
# Preprocess the data and apply Histogram Equalization postprocessing (same parameters as in wide_line_detector.py configuration file + postprocessing) # Preprocess the data and apply Histogram Equalization postprocessing (same parameters as in wide_line_detector.py configuration file + postprocessing)
from bob.bio.vein.preprocessor import Preprocessor, NoCropper, LeeMask, \ from ..preprocessor import Preprocessor, NoCrop, LeeMask, \
HuangNormalization, HistogramEqualization HuangNormalization, HistogramEqualization
processor = Preprocessor( processor = Preprocessor(
NoCropper(), NoCrop(),
LeeMask(filter_height=40, filter_width=4), LeeMask(filter_height=40, filter_width=4),
HuangNormalization(padding_width=0, padding_constant=0), HuangNormalization(padding_width=0, padding_constant=0),
HistogramEqualization(), HistogramEqualization(),
...@@ -228,7 +291,7 @@ def test_wide_line_detector_HE(): ...@@ -228,7 +291,7 @@ def test_wide_line_detector_HE():
preproc_data = processor(input_img) preproc_data = processor(input_img)
# Extract features from preprocessed and histogram equalized data using WLD extractor (same parameters as in wide_line_detector.py configuration file) # Extract features from preprocessed and histogram equalized data using WLD extractor (same parameters as in wide_line_detector.py configuration file)
from bob.bio.vein.extractor.WideLineDetector import WideLineDetector from ..extractor.WideLineDetector import WideLineDetector
# Radius of the circular neighbourhood region # Radius of the circular neighbourhood region
RADIUS_NEIGHBOURHOOD_REGION = 5 RADIUS_NEIGHBOURHOOD_REGION = 5
NEIGHBOURHOOD_THRESHOLD = 1 NEIGHBOURHOOD_THRESHOLD = 1
...@@ -251,7 +314,7 @@ def test_miura_match(): ...@@ -251,7 +314,7 @@ def test_miura_match():
probe_gen_vein = bob.io.base.load(probe_gen_filename) probe_gen_vein = bob.io.base.load(probe_gen_filename)
probe_imp_vein = bob.io.base.load(probe_imp_filename) probe_imp_vein = bob.io.base.load(probe_imp_filename)
from bob.bio.vein.algorithm.MiuraMatch import MiuraMatch from ..algorithm.MiuraMatch import MiuraMatch
MM = MiuraMatch(ch=18, cw=28) MM = MiuraMatch(ch=18, cw=28)
score_gen = MM.score(template_vein, probe_gen_vein) score_gen = MM.score(template_vein, probe_gen_vein)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment