Skip to content
Snippets Groups Projects
Commit 01954bda authored by André Anjos's avatar André Anjos :speech_balloon: Committed by André Anjos
Browse files

Allow separate thresholds for foreground and background markers; Allow...

Allow separate thresholds for foreground and background markers; Allow external utility to use watershed masker
parent 732e42f9
No related branches found
No related tags found
1 merge request!353DFV and multiple fixes
...@@ -6,7 +6,8 @@ ...@@ -6,7 +6,8 @@
import math import math
import numpy import numpy
import scipy.ndimage import scipy.ndimage
import skimage import skimage.filters
import skimage.morphology
from .utils import poly_to_mask from .utils import poly_to_mask
...@@ -511,18 +512,29 @@ class WatershedMask(Masker): ...@@ -511,18 +512,29 @@ class WatershedMask(Masker):
finger/background markers. This model should be pre-trained using a finger/background markers. This model should be pre-trained using a
separate program. separate program.
threshold (float): Threshold given a logistic regression output (interval foreground_threshold (float): Threshold given a logistic regression output
:math:`[0, 1]`) for which we consider finger markers provided by the (interval :math:`[0, 1]`) for which we consider finger markers provided
network. The higher the value, the more selective the algorithm will be by the network. The higher the value, the more selective the algorithm
and the less markers will be used from the network selection. This value will be and the less (foreground) markers will be used from the network
should be a floating point number in the open-set interval :math:`(0.5, selection. This value should be a floating point number in the open-set
1.0)`. Values for background selection will be set to :math:`1.0-T`, interval :math:`(0.0, 1.0)`. If ``background_threshold`` is not set,
where ``T`` represents this threshold. values for background selection will be set to :math:`1.0-T`, where ``T``
represents this threshold.
background_threshold (float): Threshold given a logistic regression output
(interval :math:`[0, 1]`) for which we consider finger markers provided
by the network. The smaller the value, the more selective the algorithm
will be and the less (background) markers will be used from the network
selection. This value should be a floating point number in the open-set
interval :math:`(0.0, 1.0)`. If ``foreground_threshold`` is not set,
values for foreground selection will be set to :math:`1.0-T`, where ``T``
represents this threshold.
""" """
def __init__(self, model, threshold): def __init__(self, model, foreground_threshold, background_threshold):
import bob.io.base import bob.io.base
import bob.learn.mlp import bob.learn.mlp
...@@ -533,38 +545,18 @@ class WatershedMask(Masker): ...@@ -533,38 +545,18 @@ class WatershedMask(Masker):
self.labeller.load(h5f) self.labeller.load(h5f)
self.labeller.output_activation = bob.learn.activation.Logistic() self.labeller.output_activation = bob.learn.activation.Logistic()
del h5f del h5f
self.threshold = threshold
def _view(self, image, markers, edges, mask):
'''displays and overview plot of the mask detection'''
import matplotlib.pyplot as plt
plt.subplot(2,2,1) # adjust threshold from background and foreground
_ = markers.copy() if foreground_threshold is None and background_threshold is not None:
_[_==1] = 128 foreground_threshold = 1 - background_threshold
plt.imshow(_, cmap='gray') if background_threshold is None and foreground_threshold is not None:
plt.title('Markers') background_threshold = 1 - foreground_threshold
if foreground_threshold is None and background_threshold is None:
foreground_threshold = 0.5
background_threshold = 0.5
plt.subplot(2,2,2) self.foreground_threshold = foreground_threshold
plt.imshow(edges*255, cmap='gray') self.background_threshold = background_threshold
plt.title('Edges')
plt.subplot(2,2,3)
plt.imshow(mask.astype('uint8')*255, cmap='gray')
plt.title('Mask')
plt.subplot(2,2,4)
plt.imshow(image, cmap='gray')
red_mask = numpy.dstack([
(~mask).astype('uint8')*255,
numpy.zeros_like(image),
numpy.zeros_like(image),
])
plt.imshow(red_mask, alpha=0.15)
plt.title('Image (masked)')
plt.show()
class _filterfun(object): class _filterfun(object):
...@@ -593,8 +585,8 @@ class WatershedMask(Masker): ...@@ -593,8 +585,8 @@ class WatershedMask(Masker):
return self.labeller(self.features, self.output) return self.labeller(self.features, self.output)
def __call__(self, image): def run(self, image):
'''Inputs an image, returns a mask (numpy boolean array) '''Fully preprocesses the input image and returns intermediate results
Parameters: Parameters:
...@@ -604,6 +596,12 @@ class WatershedMask(Masker): ...@@ -604,6 +596,12 @@ class WatershedMask(Masker):
Returns: Returns:
numpy.ndarray: A 2D numpy array of type ``uint8`` with the markers for
foreground and background, selected by the neural network model
numpy.ndarray: A 2D numpy array of type ``float64`` with the edges used
to define the borders of the watermasking process
numpy.ndarray: A 2D numpy array of type boolean with the caculated numpy.ndarray: A 2D numpy array of type boolean with the caculated
mask. ``True`` values correspond to regions where the finger is mask. ``True`` values correspond to regions where the finger is
located located
...@@ -621,17 +619,23 @@ class WatershedMask(Masker): ...@@ -621,17 +619,23 @@ class WatershedMask(Masker):
# applies a morphological "opening" operation # applies a morphological "opening" operation
# (https://en.wikipedia.org/wiki/Opening_(morphology)) to remove outliers # (https://en.wikipedia.org/wiki/Opening_(morphology)) to remove outliers
markers_bg = numpy.where(predictions<(1-self.threshold), 1, 0) markers_bg = numpy.where(predictions<self.background_threshold, 1, 0)
markers_bg = skimage.morphology.opening(markers_bg, selem=selector) markers_bg = skimage.morphology.opening(markers_bg, selem=selector)
markers_fg = numpy.where(predictions>self.threshold, 255, 0) markers_fg = numpy.where(predictions>=self.foreground_threshold, 255, 0)
markers_fg = skimage.morphology.opening(markers_fg, selem=selector) markers_fg = skimage.morphology.opening(markers_fg, selem=selector)
# avoids most important finger borders are loaded with markers
selector = skimage.morphology.disk(radius=2)
markers_fg = skimage.morphology.erosion(markers_fg, selem=selector)
# the final markers are a combination of foreground and background markers # the final markers are a combination of foreground and background markers
markers = markers_fg | markers_bg markers = markers_fg | markers_bg
# this will determine the natural boundaries in the image where the # this will determine the natural boundaries in the image where the
# flooding will be limited # flooding will be limited - dialation is applied on the output of the
# Sobel filter to well mark the finger boundaries
edges = skimage.filters.sobel(image) edges = skimage.filters.sobel(image)
edges = skimage.morphology.dilation(edges, selem=selector)
# applies watersheding to get a final estimate of the finger mask # applies watersheding to get a final estimate of the finger mask
segmentation = skimage.morphology.watershed(edges, markers) segmentation = skimage.morphology.watershed(edges, markers)
...@@ -641,7 +645,25 @@ class WatershedMask(Masker): ...@@ -641,7 +645,25 @@ class WatershedMask(Masker):
mask = skimage.morphology.binary_opening(segmentation.astype('bool'), mask = skimage.morphology.binary_opening(segmentation.astype('bool'),
selem=selector) selem=selector)
# visualizes processing return markers, edges, mask
#self._view(image, markers, edges, mask)
def __call__(self, image):
'''Inputs an image, returns a mask (numpy boolean array)
Parameters:
image (numpy.ndarray): A 2D numpy array of type ``uint8`` with the
input image
Returns:
numpy.ndarray: A 2D numpy array of type boolean with the caculated
mask. ``True`` values correspond to regions where the finger is
located
'''
markers, edges, mask = self.run(image)
return mask return mask
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment