Skip to content
Snippets Groups Projects
Commit be67d5a2 authored by Manuel Günther's avatar Manuel Günther
Browse files

Added select functions (was quasi_random_indices in FRL)

parent f91e4f8c
No related branches found
No related tags found
No related merge requests found
...@@ -2,6 +2,7 @@ import bob.bio.base ...@@ -2,6 +2,7 @@ import bob.bio.base
import bob.learn.linear import bob.learn.linear
import pkg_resources import pkg_resources
import os import os
import numpy
import bob.io.base.test_utils import bob.io.base.test_utils
...@@ -59,3 +60,24 @@ def test_io(): ...@@ -59,3 +60,24 @@ def test_io():
# cleanup # cleanup
if os.path.exists(filename): if os.path.exists(filename):
os.remove(filename) os.remove(filename)
def test_sampling():
# test selection of elements
indices = bob.bio.base.selected_indices(100, 10)
assert indices == range(5, 100, 10)
indices = bob.bio.base.selected_indices(100, 300)
assert indices == range(100)
indices = bob.bio.base.selected_indices(100, None)
assert indices == range(100)
array = numpy.arange(100)
elements = bob.bio.base.selected_elements(array, 10)
assert (elements - numpy.arange(5, 100, 10) == 0.).all()
elements = bob.bio.base.selected_elements(array, 200)
assert (elements - numpy.arange(100) == 0.).all()
elements = bob.bio.base.selected_elements(array, None)
assert (elements - numpy.arange(100) == 0.).all()
...@@ -31,3 +31,23 @@ def score_fusion_strategy(strategy_name = 'avarage'): ...@@ -31,3 +31,23 @@ def score_fusion_strategy(strategy_name = 'avarage'):
except KeyError: except KeyError:
# warn("score fusion strategy '%s' is unknown" % strategy_name) # warn("score fusion strategy '%s' is unknown" % strategy_name)
return None return None
def selected_indices(total_number_of_indices, desired_number_of_indices = None):
"""Returns a list of indices that will contain exactly the number of desired indices (or the number of total items in the list, if this is smaller).
These indices are selected such that they are evenly spread over the whole sequence."""
if desired_number_of_indices is None or desired_number_of_indices >= total_number_of_indices or desired_number_of_indices < 0:
return range(total_number_of_indices)
increase = float(total_number_of_indices)/float(desired_number_of_indices)
# generate a regular quasi-random index list
return [int((i +.5)*increase) for i in range(desired_number_of_indices)]
def selected_elements(list_of_elements, desired_number_of_elements = None):
"""Returns a list of elements that are sub-selected from the given list (or the list itself, if its length is smaller).
These elements are selected such that they are evenly spread over the whole list."""
total_number_of_elements = len(list_of_elements)
if desired_number_of_elements is None or desired_number_of_elements >= total_number_of_elements or desired_number_of_elements < 0:
return list_of_elements
# sub-select
return [list_of_elements[i] for i in selected_indices(total_number_of_elements, desired_number_of_elements)]
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment