Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.bio.base
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
bob
bob.bio.base
Commits
85f277fa
Commit
85f277fa
authored
5 years ago
by
Amir MOHAMMADI
Browse files
Options
Downloads
Patches
Plain Diff
Change the default y label of ROC plots
parent
e5fcb866
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!179
Separate semilogx and TPR options in ROC plots
Pipeline
#36084
passed
5 years ago
Stage: build
Changes
1
Pipelines
4
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
bob/bio/base/script/figure.py
+142
-114
142 additions, 114 deletions
bob/bio/base/script/figure.py
with
142 additions
and
114 deletions
bob/bio/base/script/figure.py
+
142
−
114
View file @
85f277fa
'''
Plots and measures for bob.bio.base
'''
"""
Plots and measures for bob.bio.base
"""
import
math
import
click
import
matplotlib.pyplot
as
mpl
import
bob.measure.script.figure
as
measure_figure
import
bob.measure
from
bob.measure
import
(
plot
,
utils
)
from
bob.measure
import
plot
,
utils
from
tabulate
import
tabulate
import
logging
LOGGER
=
logging
.
getLogger
(
"
bob.bio.base
"
)
class
Roc
(
measure_figure
.
Roc
):
def
__init__
(
self
,
ctx
,
scores
,
evaluation
,
func_load
):
super
(
Roc
,
self
).
__init__
(
ctx
,
scores
,
evaluation
,
func_load
)
self
.
_x_label
=
ctx
.
meta
.
get
(
'
x_label
'
)
or
'
FMR
'
default_y_label
=
'
1 - FNMR
'
if
self
.
_semilogx
\
else
'
False Non Match Rate
'
self
.
_y_label
=
ctx
.
meta
.
get
(
'
y_label
'
)
or
default_y_label
self
.
_x_label
=
ctx
.
meta
.
get
(
"
x_label
"
)
or
"
FMR
"
default_y_label
=
"
1 - FNMR
"
if
self
.
_tpr
else
"
FNMR
"
self
.
_y_label
=
ctx
.
meta
.
get
(
"
y_label
"
)
or
default_y_label
class
Det
(
measure_figure
.
Det
):
def
__init__
(
self
,
ctx
,
scores
,
evaluation
,
func_load
):
super
(
Det
,
self
).
__init__
(
ctx
,
scores
,
evaluation
,
func_load
)
self
.
_x_label
=
ctx
.
meta
.
get
(
'
x_label
'
)
or
'
FMR (%)
'
self
.
_y_label
=
ctx
.
meta
.
get
(
'
y_label
'
)
or
'
FNMR (%)
'
self
.
_x_label
=
ctx
.
meta
.
get
(
"
x_label
"
)
or
"
FMR (%)
"
self
.
_y_label
=
ctx
.
meta
.
get
(
"
y_label
"
)
or
"
FNMR (%)
"
class
Cmc
(
measure_figure
.
PlotBase
):
'''
Handles the plotting of Cmc
'''
"""
Handles the plotting of Cmc
"""
def
__init__
(
self
,
ctx
,
scores
,
evaluation
,
func_load
):
super
(
Cmc
,
self
).
__init__
(
ctx
,
scores
,
evaluation
,
func_load
)
self
.
_semilogx
=
ctx
.
meta
.
get
(
'
semilogx
'
,
True
)
self
.
_titles
=
self
.
_titles
or
[
'
CMC dev.
'
,
'
CMC eval.
'
]
self
.
_x_label
=
self
.
_x_label
or
'
Rank
'
self
.
_y_label
=
self
.
_y_label
or
'
Identification rate
'
self
.
_semilogx
=
ctx
.
meta
.
get
(
"
semilogx
"
,
True
)
self
.
_titles
=
self
.
_titles
or
[
"
CMC dev.
"
,
"
CMC eval.
"
]
self
.
_x_label
=
self
.
_x_label
or
"
Rank
"
self
.
_y_label
=
self
.
_y_label
or
"
Identification rate
"
self
.
_max_R
=
0
def
compute
(
self
,
idx
,
input_scores
,
input_names
):
'''
Plot CMC for dev and eval data using
:py:func:`bob.measure.plot.cmc`
'''
"""
Plot CMC for dev and eval data using
:py:func:`bob.measure.plot.cmc`
"""
mpl
.
figure
(
1
)
if
self
.
_eval
:
linestyle
=
'
-
'
if
not
self
.
_split
else
self
.
_linestyles
[
idx
]
linestyle
=
"
-
"
if
not
self
.
_split
else
self
.
_linestyles
[
idx
]
LOGGER
.
info
(
"
CMC dev. curve using %s
"
,
input_names
[
0
])
rank
=
plot
.
cmc
(
input_scores
[
0
],
logx
=
self
.
_semilogx
,
color
=
self
.
_colors
[
idx
],
linestyle
=
linestyle
,
label
=
self
.
_label
(
'
dev.
'
,
idx
)
input_scores
[
0
],
logx
=
self
.
_semilogx
,
color
=
self
.
_colors
[
idx
],
linestyle
=
linestyle
,
label
=
self
.
_label
(
"
dev.
"
,
idx
),
)
self
.
_max_R
=
max
(
rank
,
self
.
_max_R
)
linestyle
=
'
--
'
linestyle
=
"
--
"
if
self
.
_split
:
mpl
.
figure
(
2
)
linestyle
=
self
.
_linestyles
[
idx
]
LOGGER
.
info
(
"
CMC eval. curve using %s
"
,
input_names
[
1
])
rank
=
plot
.
cmc
(
input_scores
[
1
],
logx
=
self
.
_semilogx
,
color
=
self
.
_colors
[
idx
],
linestyle
=
linestyle
,
label
=
self
.
_label
(
'
eval.
'
,
idx
)
input_scores
[
1
],
logx
=
self
.
_semilogx
,
color
=
self
.
_colors
[
idx
],
linestyle
=
linestyle
,
label
=
self
.
_label
(
"
eval.
"
,
idx
),
)
self
.
_max_R
=
max
(
rank
,
self
.
_max_R
)
else
:
LOGGER
.
info
(
"
CMC dev. curve using %s
"
,
input_names
[
0
])
rank
=
plot
.
cmc
(
input_scores
[
0
],
logx
=
self
.
_semilogx
,
color
=
self
.
_colors
[
idx
],
linestyle
=
self
.
_linestyles
[
idx
],
label
=
self
.
_label
(
'
dev.
'
,
idx
)
input_scores
[
0
],
logx
=
self
.
_semilogx
,
color
=
self
.
_colors
[
idx
],
linestyle
=
self
.
_linestyles
[
idx
],
label
=
self
.
_label
(
"
dev.
"
,
idx
),
)
self
.
_max_R
=
max
(
rank
,
self
.
_max_R
)
class
Dir
(
measure_figure
.
PlotBase
):
'''
Handles the plotting of DIR curve
'''
"""
Handles the plotting of DIR curve
"""
def
__init__
(
self
,
ctx
,
scores
,
evaluation
,
func_load
):
super
(
Dir
,
self
).
__init__
(
ctx
,
scores
,
evaluation
,
func_load
)
self
.
_semilogx
=
ctx
.
meta
.
get
(
'
semilogx
'
,
True
)
self
.
_rank
=
ctx
.
meta
.
get
(
'
rank
'
,
1
)
self
.
_titles
=
self
.
_titles
or
[
'
DIR curve
'
]
*
2
self
.
_x_label
=
self
.
_x_label
or
'
False Alarm Rate
'
self
.
_y_label
=
self
.
_y_label
or
'
DIR
'
self
.
_semilogx
=
ctx
.
meta
.
get
(
"
semilogx
"
,
True
)
self
.
_rank
=
ctx
.
meta
.
get
(
"
rank
"
,
1
)
self
.
_titles
=
self
.
_titles
or
[
"
DIR curve
"
]
*
2
self
.
_x_label
=
self
.
_x_label
or
"
False Alarm Rate
"
self
.
_y_label
=
self
.
_y_label
or
"
DIR
"
def
compute
(
self
,
idx
,
input_scores
,
input_names
):
'''
Plot DIR for dev and eval data using
:py:func:`bob.measure.plot.detection_identification_curve`
'''
"""
Plot DIR for dev and eval data using
:py:func:`bob.measure.plot.detection_identification_curve`
"""
mpl
.
figure
(
1
)
if
self
.
_eval
:
linestyle
=
'
-
'
if
not
self
.
_split
else
self
.
_linestyles
[
idx
]
linestyle
=
"
-
"
if
not
self
.
_split
else
self
.
_linestyles
[
idx
]
LOGGER
.
info
(
"
DIR dev. curve using %s
"
,
input_names
[
0
])
plot
.
detection_identification_curve
(
input_scores
[
0
],
rank
=
self
.
_rank
,
logx
=
self
.
_semilogx
,
color
=
self
.
_colors
[
idx
],
linestyle
=
linestyle
,
label
=
self
.
_label
(
'
dev
'
,
idx
)
input_scores
[
0
],
rank
=
self
.
_rank
,
logx
=
self
.
_semilogx
,
color
=
self
.
_colors
[
idx
],
linestyle
=
linestyle
,
label
=
self
.
_label
(
"
dev
"
,
idx
),
)
linestyle
=
'
--
'
linestyle
=
"
--
"
if
self
.
_split
:
mpl
.
figure
(
2
)
linestyle
=
self
.
_linestyles
[
idx
]
LOGGER
.
info
(
"
DIR eval. curve using %s
"
,
input_names
[
1
])
plot
.
detection_identification_curve
(
input_scores
[
1
],
rank
=
self
.
_rank
,
logx
=
self
.
_semilogx
,
color
=
self
.
_colors
[
idx
],
linestyle
=
linestyle
,
label
=
self
.
_label
(
'
eval
'
,
idx
)
input_scores
[
1
],
rank
=
self
.
_rank
,
logx
=
self
.
_semilogx
,
color
=
self
.
_colors
[
idx
],
linestyle
=
linestyle
,
label
=
self
.
_label
(
"
eval
"
,
idx
),
)
else
:
LOGGER
.
info
(
"
DIR dev. curve using %s
"
,
input_names
[
0
])
plot
.
detection_identification_curve
(
input_scores
[
0
],
rank
=
self
.
_rank
,
logx
=
self
.
_semilogx
,
color
=
self
.
_colors
[
idx
],
linestyle
=
self
.
_linestyles
[
idx
],
label
=
self
.
_label
(
'
dev
'
,
idx
)
input_scores
[
0
],
rank
=
self
.
_rank
,
logx
=
self
.
_semilogx
,
color
=
self
.
_colors
[
idx
],
linestyle
=
self
.
_linestyles
[
idx
],
label
=
self
.
_label
(
"
dev
"
,
idx
),
)
if
self
.
_min_dig
is
not
None
:
...
...
@@ -120,56 +135,66 @@ class Dir(measure_figure.PlotBase):
class
Metrics
(
measure_figure
.
Metrics
):
'''
Compute metrics from score files
'''
"""
Compute metrics from score files
"""
def
__init__
(
self
,
ctx
,
scores
,
evaluation
,
func_load
,
names
=
(
'
Failure to Acquire
'
,
'
False Match Rate
'
,
'
False Non Match Rate
'
,
'
False Accept Rate
'
,
'
False Reject Rate
'
,
'
Half Total Error Rate
'
)):
super
(
Metrics
,
self
).
__init__
(
ctx
,
scores
,
evaluation
,
func_load
,
names
)
def
__init__
(
self
,
ctx
,
scores
,
evaluation
,
func_load
,
names
=
(
"
Failure to Acquire
"
,
"
False Match Rate
"
,
"
False Non Match Rate
"
,
"
False Accept Rate
"
,
"
False Reject Rate
"
,
"
Half Total Error Rate
"
,
),
):
super
(
Metrics
,
self
).
__init__
(
ctx
,
scores
,
evaluation
,
func_load
,
names
)
def
init_process
(
self
):
if
self
.
_criterion
==
'
rr
'
:
self
.
_thres
=
[
None
]
*
self
.
n_systems
if
self
.
_thres
is
None
else
\
self
.
_thres
if
self
.
_criterion
==
"
rr
"
:
self
.
_thres
=
(
[
None
]
*
self
.
n_systems
if
self
.
_thres
is
None
else
self
.
_thres
)
def
compute
(
self
,
idx
,
input_scores
,
input_names
):
'''
Compute metrics for the given criteria
'''
"""
Compute metrics for the given criteria
"""
title
=
self
.
_legends
[
idx
]
if
self
.
_legends
is
not
None
else
None
headers
=
[
''
or
title
,
'
Dev. %s
'
%
input_names
[
0
]]
headers
=
[
""
or
title
,
"
Dev. %s
"
%
input_names
[
0
]]
if
self
.
_eval
and
input_scores
[
1
]
is
not
None
:
headers
.
append
(
'
eval % s
'
%
input_names
[
1
])
if
self
.
_criterion
==
'
rr
'
:
rr
=
bob
.
measure
.
recognition_rate
(
input_scores
[
0
],
self
.
_thres
[
idx
])
headers
.
append
(
"
eval % s
"
%
input_names
[
1
])
if
self
.
_criterion
==
"
rr
"
:
rr
=
bob
.
measure
.
recognition_rate
(
input_scores
[
0
],
self
.
_thres
[
idx
])
dev_rr
=
"
%.1f%%
"
%
(
100
*
rr
)
raws
=
[[
'
RR
'
,
dev_rr
]]
raws
=
[[
"
RR
"
,
dev_rr
]]
if
self
.
_eval
and
input_scores
[
1
]
is
not
None
:
rr
=
bob
.
measure
.
recognition_rate
(
input_scores
[
1
],
self
.
_thres
[
idx
])
rr
=
bob
.
measure
.
recognition_rate
(
input_scores
[
1
],
self
.
_thres
[
idx
])
eval_rr
=
"
%.1f%%
"
%
(
100
*
rr
)
raws
[
0
].
append
(
eval_rr
)
click
.
echo
(
tabulate
(
raws
,
headers
,
self
.
_tablefmt
),
file
=
self
.
log_file
click
.
echo
(
tabulate
(
raws
,
headers
,
self
.
_tablefmt
),
file
=
self
.
log_file
)
elif
self
.
_criterion
==
"
mindcf
"
:
if
"
cost
"
in
self
.
_ctx
.
meta
:
cost
=
self
.
_ctx
.
meta
.
get
(
"
cost
"
,
0.99
)
threshold
=
(
bob
.
measure
.
min_weighted_error_rate_threshold
(
input_scores
[
0
][
0
],
input_scores
[
0
][
1
],
cost
)
if
self
.
_thres
is
None
else
self
.
_thres
[
idx
]
)
elif
self
.
_criterion
==
'
mindcf
'
:
if
'
cost
'
in
self
.
_ctx
.
meta
:
cost
=
self
.
_ctx
.
meta
.
get
(
'
cost
'
,
0.99
)
threshold
=
bob
.
measure
.
min_weighted_error_rate_threshold
(
input_scores
[
0
][
0
],
input_scores
[
0
][
1
],
cost
)
if
self
.
_thres
is
None
else
self
.
_thres
[
idx
]
if
self
.
_thres
is
None
:
click
.
echo
(
"
[minDCF - Cost:%f] Threshold on Development set `%s`: %e
"
%
(
cost
,
input_names
[
0
],
threshold
),
file
=
self
.
log_file
file
=
self
.
log_file
,
)
else
:
click
.
echo
(
"
[minDCF] User defined Threshold: %e
"
%
threshold
,
file
=
self
.
log_file
file
=
self
.
log_file
,
)
# apply threshold to development set
far
,
frr
=
bob
.
measure
.
farfrr
(
...
...
@@ -177,11 +202,12 @@ class Metrics(measure_figure.Metrics):
)
dev_far_str
=
"
%.1f%%
"
%
(
100
*
far
)
dev_frr_str
=
"
%.1f%%
"
%
(
100
*
frr
)
dev_mindcf_str
=
"
%.1f%%
"
%
(
(
cost
*
far
+
(
1
-
cost
)
*
frr
)
*
100.
)
raws
=
[[
'
FAR
'
,
dev_far_str
],
[
'
FRR
'
,
dev_frr_str
],
[
'
minDCF
'
,
dev_mindcf_str
]]
dev_mindcf_str
=
"
%.1f%%
"
%
((
cost
*
far
+
(
1
-
cost
)
*
frr
)
*
100.0
)
raws
=
[
[
"
FAR
"
,
dev_far_str
],
[
"
FRR
"
,
dev_frr_str
],
[
"
minDCF
"
,
dev_mindcf_str
],
]
if
self
.
_eval
and
input_scores
[
1
]
is
not
None
:
# apply threshold to development set
far
,
frr
=
bob
.
measure
.
farfrr
(
...
...
@@ -189,27 +215,23 @@ class Metrics(measure_figure.Metrics):
)
eval_far_str
=
"
%.1f%%
"
%
(
100
*
far
)
eval_frr_str
=
"
%.1f%%
"
%
(
100
*
frr
)
eval_mindcf_str
=
"
%.1f%%
"
%
(
(
cost
*
far
+
(
1
-
cost
)
*
frr
)
*
100.
)
eval_mindcf_str
=
"
%.1f%%
"
%
((
cost
*
far
+
(
1
-
cost
)
*
frr
)
*
100.0
)
raws
[
0
].
append
(
eval_far_str
)
raws
[
1
].
append
(
eval_frr_str
)
raws
[
2
].
append
(
eval_mindcf_str
)
click
.
echo
(
tabulate
(
raws
,
headers
,
self
.
_tablefmt
),
file
=
self
.
log_file
)
elif
self
.
_criterion
==
'
cllr
'
:
cllr
=
bob
.
measure
.
calibration
.
cllr
(
input_scores
[
0
][
0
],
input_scores
[
0
][
1
])
click
.
echo
(
tabulate
(
raws
,
headers
,
self
.
_tablefmt
),
file
=
self
.
log_file
)
elif
self
.
_criterion
==
"
cllr
"
:
cllr
=
bob
.
measure
.
calibration
.
cllr
(
input_scores
[
0
][
0
],
input_scores
[
0
][
1
])
min_cllr
=
bob
.
measure
.
calibration
.
min_cllr
(
input_scores
[
0
][
0
],
input_scores
[
0
][
1
]
)
dev_cllr_str
=
"
%.1f%%
"
%
cllr
dev_min_cllr_str
=
"
%.1f%%
"
%
min_cllr
raws
=
[[
'
Cllr
'
,
dev_cllr_str
],
[
'
minCllr
'
,
dev_min_cllr_str
]]
raws
=
[[
"
Cllr
"
,
dev_cllr_str
],
[
"
minCllr
"
,
dev_min_cllr_str
]]
if
self
.
_eval
and
input_scores
[
1
]
is
not
None
:
cllr
=
bob
.
measure
.
calibration
.
cllr
(
input_scores
[
1
][
0
],
input_scores
[
1
][
1
])
cllr
=
bob
.
measure
.
calibration
.
cllr
(
input_scores
[
1
][
0
],
input_scores
[
1
][
1
]
)
min_cllr
=
bob
.
measure
.
calibration
.
min_cllr
(
input_scores
[
1
][
0
],
input_scores
[
1
][
1
]
)
...
...
@@ -217,24 +239,24 @@ class Metrics(measure_figure.Metrics):
eval_min_cllr_str
=
"
%.1f%%
"
%
min_cllr
raws
[
0
].
append
(
eval_cllr_str
)
raws
[
1
].
append
(
eval_min_cllr_str
)
click
.
echo
(
tabulate
(
raws
,
headers
,
self
.
_tablefmt
),
file
=
self
.
log_file
)
click
.
echo
(
tabulate
(
raws
,
headers
,
self
.
_tablefmt
),
file
=
self
.
log_file
)
else
:
title
=
self
.
_legends
[
idx
]
if
self
.
_legends
is
not
None
else
None
all_metrics
=
self
.
_get_all_metrics
(
idx
,
input_scores
,
input_names
)
headers
=
[
'
'
or
title
,
'
Development
'
]
rows
=
[[
self
.
names
[
0
],
all_metrics
[
0
][
0
]],
[
self
.
names
[
1
],
all_metrics
[
0
][
1
]],
[
self
.
names
[
2
],
all_metrics
[
0
][
2
]],
[
self
.
names
[
3
],
all_metrics
[
0
][
3
]],
[
self
.
names
[
4
],
all_metrics
[
0
][
4
]],
[
self
.
names
[
5
],
all_metrics
[
0
][
5
]]]
headers
=
[
"
"
or
title
,
"
Development
"
]
rows
=
[
[
self
.
names
[
0
],
all_metrics
[
0
][
0
]],
[
self
.
names
[
1
],
all_metrics
[
0
][
1
]],
[
self
.
names
[
2
],
all_metrics
[
0
][
2
]],
[
self
.
names
[
3
],
all_metrics
[
0
][
3
]],
[
self
.
names
[
4
],
all_metrics
[
0
][
4
]],
[
self
.
names
[
5
],
all_metrics
[
0
][
5
]],
]
if
self
.
_eval
:
# computes statistics for the eval set based on the threshold a
# priori
headers
.
append
(
'
Evaluation
'
)
headers
.
append
(
"
Evaluation
"
)
rows
[
0
].
append
(
all_metrics
[
1
][
0
])
rows
[
1
].
append
(
all_metrics
[
1
][
1
])
rows
[
2
].
append
(
all_metrics
[
1
][
2
])
...
...
@@ -246,25 +268,31 @@ class Metrics(measure_figure.Metrics):
class
MultiMetrics
(
measure_figure
.
MultiMetrics
):
'''
Compute metrics from score files
'''
"""
Compute metrics from score files
"""
def
__init__
(
self
,
ctx
,
scores
,
evaluation
,
func_load
):
super
(
MultiMetrics
,
self
).
__init__
(
ctx
,
scores
,
evaluation
,
func_load
,
ctx
,
scores
,
evaluation
,
func_load
,
names
=
(
'
Failure to Acquire
'
,
'
False Match Rate
'
,
'
False Non Match Rate
'
,
'
False Accept Rate
'
,
'
False Reject Rate
'
,
'
Half Total Error Rate
'
))
"
Failure to Acquire
"
,
"
False Match Rate
"
,
"
False Non Match Rate
"
,
"
False Accept Rate
"
,
"
False Reject Rate
"
,
"
Half Total Error Rate
"
,
),
)
class
Hist
(
measure_figure
.
Hist
):
'''
Histograms for biometric scores
'''
"""
Histograms for biometric scores
"""
def
_setup_hist
(
self
,
neg
,
pos
):
self
.
_title_base
=
'
Biometric scores
'
self
.
_density_hist
(
pos
[
0
],
n
=
0
,
label
=
'
Genuines
'
,
alpha
=
0.9
,
color
=
'
C2
'
)
self
.
_title_base
=
"
Biometric scores
"
self
.
_density_hist
(
pos
[
0
],
n
=
0
,
label
=
"
Genuines
"
,
alpha
=
0.9
,
color
=
"
C2
"
)
self
.
_density_hist
(
neg
[
0
],
n
=
1
,
label
=
'
Zero-effort impostors
'
,
alpha
=
0.8
,
color
=
'
C0
'
neg
[
0
],
n
=
1
,
label
=
"
Zero-effort impostors
"
,
alpha
=
0.8
,
color
=
"
C0
"
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment