Skip to content
Snippets Groups Projects
Commit 416be191 authored by Theophile GENTILHOMME's avatar Theophile GENTILHOMME
Browse files

Add sort option (sorts return pos/neg scores) in the split function

parent 816862e7
No related branches found
No related tags found
2 merge requests!146Add 4-5-col files related functionalities and add click commands,!141Add sort option (sorts return pos/neg scores) in the split function
Pipeline #
......@@ -289,38 +289,47 @@ def scores(filename, ncolumns=None):
return _iterate_score_file(filename)
def split(filename, ncolumns=None):
"""split(filename, ncolumns=None) -> negatives, positives
Loads the scores from the given score file and splits them into positives and negatives.
Depending on the score file format, it calls see :py:func:`split_four_column`
and :py:func:`split_five_column` for details.
Parameters:
filename: :py:class:`str`, ``file-like``:
The file object that will be opened with :py:func:`open_file` containing the scores.
ncolumns: int or ``None``
If specified to be ``4`` or ``5``, the score file will be assumed to be in the given format.
If not specified, the score file format will be estimated automatically
Returns:
negatives: 1D :py:class:`numpy.ndarray` of type float
This array contains the list of scores, for which the ``claimed_id`` and the ``real_id`` are different (see :py:func:`four_column`)
positives: 1D :py:class:`numpy.ndarray` of type float
This array contains the list of scores, for which the ``claimed_id`` and the ``real_id`` are identical (see :py:func:`four_column`)
def split(filename, ncolumns=None, sort=False):
"""Loads the scores from the given score file and splits them into positives
and negatives.
Depending on the score file format, it calls see
:py:func:`bob.measure.load.split_four_column` and
:py:func:`bob.measure.load.split_five_column` for details.
Parameters
----------
filename : str
The path to the score file.
ncolumns : int or ``None``
If specified to be ``4`` or ``5``, the score file will be assumed to be
in the given format. If not specified, the score file format will be
estimated automatically
sort : :obj:`bool`, optional
If ``True``, will return sorted negatives and positives
Returns
-------
negatives : 1D :py:class:`numpy.ndarray` of type float
This array contains the list of scores, for which the ``claimed_id`` and
the ``real_id`` are different (see :py:func:`four_column`)
positives : 1D :py:class:`numpy.ndarray` of type float
This array contains the list of scores, for which the ``claimed_id`` and
the ``real_id`` are identical (see :py:func:`four_column`)
"""
ncolumns = _estimate_score_file_format(filename, ncolumns)
if ncolumns == 4:
return split_four_column(filename)
neg, pos = split_four_column(filename)
else:
assert ncolumns == 5
return split_five_column(filename)
neg, pos = split_five_column(filename)
if sort:
neg.sort()
pos.sort()
return neg, pos
def cmc(filename, ncolumns=None):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment