Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
N
neural_filters
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
software
neural_filters
Commits
b315607e
Commit
b315607e
authored
May 07, 2018
by
M. François
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
consistent init
parent
5202a60f
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
11 additions
and
10 deletions
+11
-10
neural_filters/neural_filter.py
neural_filters/neural_filter.py
+3
-3
neural_filters/neural_filter_2CC.py
neural_filters/neural_filter_2CC.py
+8
-7
No files found.
neural_filters/neural_filter.py
View file @
b315607e
...
...
@@ -53,13 +53,13 @@ class NeuralFilter(torch.nn.Module):
parts
=
self
.
hidden_size
*
2
ranges
=
np
.
arange
(
1
,
parts
,
2
)
init_modulus
=
ranges
*
(
max_modulus
-
min_modulus
)
/
parts
+
min_modulus
init
=
asig
(
init_modulus
)
init
=
ranges
*
(
max_modulus
-
min_modulus
)
/
parts
+
min_modulus
if
not
isinstance
(
init
,
np
.
ndarray
):
init
=
np
.
array
(
init
,
ndmin
=
1
)
ten_init
=
torch
.
from_numpy
(
init
)
init_modulus
=
asig
(
init
)
ten_init
=
torch
.
from_numpy
(
init_modulus
)
self
.
bias_forget
.
data
.
copy_
(
ten_init
)
def
__repr__
(
self
):
...
...
neural_filters/neural_filter_2CC.py
View file @
b315607e
...
...
@@ -54,27 +54,28 @@ class NeuralFilter2CC(torch.nn.Module):
min_angle
=
MIN_ANGLE
,
max_angle
=
MAX_ANGLE
,
modulus
=
INIT_MODULUS
):
if
init_modulus
is
None
:
init_modulus
=
asig
(
modulus
)
init_modulus
=
modulus
if
not
isinstance
(
init_modulus
,
np
.
ndarray
):
init_modulus
=
np
.
array
(
init_modulus
,
ndmin
=
1
)
ten_init
=
torch
.
from_numpy
(
init_modulus
)
init_mod
=
asig
(
init_modulus
)
ten_init
=
torch
.
from_numpy
(
init_mod
)
self
.
bias_modulus
.
data
.
copy_
(
ten_init
)
if
init_theta
is
None
:
parts
=
self
.
hidden_size
*
2
ranges
=
np
.
arange
(
1
,
parts
,
2
)
init_angle
=
ranges
*
(
max_angle
-
min_angle
)
/
parts
+
min_angle
cosangle
=
np
.
cos
(
init_angle
)
init_theta
=
atanh
(
cosangle
)
init_theta
=
ranges
*
(
max_angle
-
min_angle
)
/
parts
+
min_angle
if
not
isinstance
(
init_theta
,
np
.
ndarray
):
init_theta
=
np
.
array
(
init_theta
,
ndmin
=
1
)
ten_init
=
torch
.
from_numpy
(
init_theta
)
cosangle
=
np
.
cos
(
init_theta
)
init_angle
=
atanh
(
cosangle
)
ten_init
=
torch
.
from_numpy
(
init_angle
)
self
.
bias_theta
.
data
.
copy_
(
ten_init
)
def
__repr__
(
self
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment