NeuralFilter2R.py 1.92 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
"""
NeuralFilter2R
**************

This module implements a trainable all-pole second order filter with real poles using pyTorch


Copyright (c) 2018 Idiap Research Institute, http://www.idiap.ch/

Written by Francois Marelli <Francois.Marelli@idiap.ch>

This file is part of neural_filters.

neural_filters is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License version 3 as
published by the Free Software Foundation.

neural_filters is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with neural_filters. If not, see <http://www.gnu.org/licenses/>.

"""

from . import NeuralFilterCell

import torch

class NeuralFilter2R (torch.nn.Module):
    """
        A trainable second-order all-(real)pole filter :math:`\\frac{1}{1 - P_{1} z^{-1}} \\frac{1}{1 - P_{2} z^{-1}}`

        * **hidden_size** (int) - the size of data vector
        """

    def __init__(self, hidden_size):
        super(NeuralFilter2R, self).__init__()

        self.hidden_size = hidden_size

        self.first_cell = NeuralFilterCell(self.hidden_size)
        self.second_cell = NeuralFilterCell(self.hidden_size)

    def __repr__(self):
        s = '{name}({input_size}, {hidden_size}'
        return s.format(name=self.__class__.__name__, **self.__dict__)

    def forward(self, input, hx=None):
        if hx is None:
            hx = torch.autograd.Variable(input.data.new(input.size(1),
                                                         self.hidden_size
                                                         ).zero_(), requires_grad=False)

        interm, interm_hidden = self.first_cell(input)
        output, hidden = self.second_cell(interm)

        return output, hidden