diff --git a/doc/rcfs.pdf b/doc/rcfs.pdf
index b3def33d782aad8d0a3ec87e6c1f2916ab4ebe6b..17c0450d5d7226b3feba257673d1c56142c89f5b 100644
Binary files a/doc/rcfs.pdf and b/doc/rcfs.pdf differ
diff --git a/doc/rcfs.tex b/doc/rcfs.tex
index aa904d1faf4a733a363879e385c9d41122b5f49d..7800e6bc6a626ecb3a08870e21d7efaab6bf5cef 100644
--- a/doc/rcfs.tex
+++ b/doc/rcfs.tex
@@ -1968,7 +1968,7 @@ The obstacle example above can easily be extended to the problem of maintaining
 that we exploit to define $\bm{f}(\bm{x}_t)$ and $\bm{J}(\bm{x}_t)$ in \eqref{eq:du} as
 \begin{align*}
 	\bm{f}(\bm{x}_t) &= f^\tp{dist}\Big( e(\bm{x}_t) \Big), \quad\quad
-	\bm{J}(\bm{x}_t) = -\frac{2}{r} {(\bm{x}_t-\bm{\mu})}^\trsp ,\\ %\; g^\tp{dist}\Big( e(\bm{x}_t) \Big)
+	\bm{J}(\bm{x}_t) = -\frac{2}{r^2} {(\bm{x}_t-\bm{\mu})}^\trsp ,\\ %\; g^\tp{dist}\Big( e(\bm{x}_t) \Big)
 	\text{with}\quad e(\bm{x}_t) &= \frac{1}{r^2} {(\bm{x}_t-\bm{\mu})}^\trsp (\bm{x}_t-\bm{\mu}).
 \end{align*}