diff --git a/doc/rcfs.pdf b/doc/rcfs.pdf index b3def33d782aad8d0a3ec87e6c1f2916ab4ebe6b..17c0450d5d7226b3feba257673d1c56142c89f5b 100644 Binary files a/doc/rcfs.pdf and b/doc/rcfs.pdf differ diff --git a/doc/rcfs.tex b/doc/rcfs.tex index aa904d1faf4a733a363879e385c9d41122b5f49d..7800e6bc6a626ecb3a08870e21d7efaab6bf5cef 100644 --- a/doc/rcfs.tex +++ b/doc/rcfs.tex @@ -1968,7 +1968,7 @@ The obstacle example above can easily be extended to the problem of maintaining that we exploit to define $\bm{f}(\bm{x}_t)$ and $\bm{J}(\bm{x}_t)$ in \eqref{eq:du} as \begin{align*} \bm{f}(\bm{x}_t) &= f^\tp{dist}\Big( e(\bm{x}_t) \Big), \quad\quad - \bm{J}(\bm{x}_t) = -\frac{2}{r} {(\bm{x}_t-\bm{\mu})}^\trsp ,\\ %\; g^\tp{dist}\Big( e(\bm{x}_t) \Big) + \bm{J}(\bm{x}_t) = -\frac{2}{r^2} {(\bm{x}_t-\bm{\mu})}^\trsp ,\\ %\; g^\tp{dist}\Big( e(\bm{x}_t) \Big) \text{with}\quad e(\bm{x}_t) &= \frac{1}{r^2} {(\bm{x}_t-\bm{\mu})}^\trsp (\bm{x}_t-\bm{\mu}). \end{align*}