diff --git a/doc/rcfs.tex b/doc/rcfs.tex index 626f12e15d45fc1f91b4cab56d2e88dc81b78842..d40dc55bc54c8d6b496edc0d1671f4a22e8c5dda 100644 --- a/doc/rcfs.tex +++ b/doc/rcfs.tex @@ -2283,7 +2283,7 @@ with $\bm{J}(\bm{x}_t)=\frac{\partial\bm{f}(\bm{x}_t)}{\partial\bm{x}_t}$ a Jaco At a trajectory level, the cost can be written as \begin{equation} - c(\bm{x},\bm{u}) = \bm{f}(\bm{x})^{\!\trsp} \bm{Q} \bm{f}(\bm{x}) + \bm{u}_t^\trsp \bm{R} \, \bm{u}, + c(\bm{x},\bm{u}) = \bm{f}(\bm{x})^{\!\trsp} \bm{Q} \bm{f}(\bm{x}) + \bm{u}^\trsp \bm{R} \, \bm{u}, \end{equation} where the tracking and control weights are represented by the diagonally concatenated matrices $\bm{Q}\!=\!\mathrm{blockdiag}(\bm{Q}_1,\bm{Q}_2,\ldots,\bm{Q}_T)$ and $\bm{R}\!=\!\mathrm{blockdiag}(\bm{R}_{1},\bm{R}_{2},\ldots,\bm{R}_{T-1})$, respectively. %\in\mathbb{R}^{DCT\times DCT} In the above, with a slight abuse of notation, we defined $\bm{f}(\bm{x})$ as a vector concatenating the vectors $\bm{f}(\bm{x}_t)$. Similarly, $\bm{J}(\bm{x})$ will represent a block-diagonal concatenation of the Jacobian matrices $\bm{J}(\bm{x}_t)$. @@ -2843,7 +2843,7 @@ where $(\bm{s}_{1,1} \bm{s}_{2,2}^\trsp)$ is a selection matrix. By leveraging this matrix formulation, the curvature in \eqref{eq:curvature0} can be expressed as \begin{equation} %\kappa(\bm{x}) = \begin{frac}{\bm{x}^\trsp \bm{S}_A \bm{x}}{(\bm{x}^\trsp \bm{S}_B \bm{x})^{\frac{3}{2}}}, - \kappa(\bm{x}) = (\bm{x}^\trsp \bm{S}_B \bm{x})^{-\frac{3}{2}} \; \bm{x}^\trsp \bm{S}_A \bm{x}, + \kappa(\bm{x}) = (\bm{x}^\trsp \bm{S}_B \, \bm{x})^{-\frac{3}{2}} \; \bm{x}^\trsp \bm{S}_A \, \bm{x}, \label{eq:curvature} \end{equation} with selection matrices $\bm{S}_A=\bm{s}_{1,1} \bm{s}_{2,2}^\trsp - \bm{s}_{1,2} \bm{s}_{2,1}^\trsp$ and $\bm{S}_B=\bm{s}_{1,1} \bm{s}_{1,1}^\trsp + \bm{s}_{1,2} \bm{s}_{1,2}^\trsp$. @@ -2852,7 +2852,7 @@ With this formulation, by using the derivative property $(fg)'=f'g+fg'$, and by \begin{equation} \bm{J}(\bm{x}) = \frac{\partial \kappa(\bm{x})}{\partial\bm{x}} = (\bm{x}^\trsp \bm{S}_B \bm{x})^{-\frac{3}{2}} \; (\bm{S}_A+\bm{S}_A^\trsp) \bm{x} - - 3 \; (\bm{x}^\trsp \bm{S}_A \bm{x}) \; (\bm{x}^\trsp \bm{S}_B \bm{x})^{-\frac{5}{2}} \; \bm{S}_B \bm{x}. + 3 \; (\bm{x}^\trsp \bm{S}_A \, \bm{x}) \; (\bm{x}^\trsp \bm{S}_B \, \bm{x})^{-\frac{5}{2}} \; \bm{S}_B \bm{x}. \label{eq:diff_curvature} \end{equation}