Commit 3234f9ff authored by Emmanuel PIGNAT's avatar Emmanuel PIGNAT
Browse files

removing unused parameter

parent 3e28b023
......@@ -206,7 +206,7 @@ class VBayesianGMM(MTMM):
_gmm.priors = self.priors
self._posterior_samples += [_gmm]
def posterior(self, data, dims=slice(0, 7), mean_scale=10., cov=None, dp=True):
def posterior(self, data, mean_scale=10., cov=None, dp=True):
self.nb_dim = data.shape[1]
......@@ -243,6 +243,21 @@ class VBayesianGMM(MTMM):
self.nb_states = states.shape[0] + 1
def condition(self, *args, **kwargs):
[1] M. Hofert, 'On the Multivariate t Distribution,' R J., vol. 5, pp. 129-136, 2013.
Conditional probabilities in a Joint Multivariate t Distribution Mixture Model
:param data_in: [np.array([nb_data, nb_dim])
Observed datapoints x_in
:param dim_in: [slice] or [list of index]
Dimension of input space e.g.: slice(0, 3), [0, 2, 3]
:param dim_out: [slice] or [list of index]
Dimension of output space e.g.: slice(3, 6), [1, 4]
:param h: optional - [np.array([nb_states, nb_data])]
Overrides marginal probability of states given input dimensions
if not kwargs.get('samples', False):
return MTMM.condition(self, *args, **kwargs)
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment