Commit 142b844c authored by Hakan GIRGIN's avatar Hakan GIRGIN
Browse files

Notebooks tested and re-run.

parent ffe507f8
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
%% Cell type:markdown id: tags:
$
\newcommand{\Tau}{\mathcal{T}}
\newcommand{\bm}[1]{{\boldsymbol{#1}}}
\newcommand{\dt}[1]{{\frac{d#1}{dt}}}
%\newcommand{\bm}{\mathbf{#1}}
\newcommand{\trsp}{{\scriptscriptstyle\top}}$
%% Cell type:markdown id: tags:
This notebook demonstrate the principal functionalities of pbdlib.
%% Cell type:code id: tags:
``` python
import numpy as np
import os
import matplotlib.pyplot as plt
import pbdlib as pbd
from pprint import pprint as print # for pretty printing
%matplotlib inline
%load_ext autoreload
%autoreload 2
from pbdlib.utils.jupyter_utils import *
np.set_printoptions(precision=2)
```
%% Cell type:markdown id: tags:
# Multivariate Normal Distribution (MVN) - Gaussian
Here we create a multivariate Gaussian distribution, plot it, transform it and make product.
%% Cell type:markdown id: tags:
## Transformation
We demonstrate how to transform MVN distributions. Suppose that the distribution acts on transformed datapoint $\bm{x}$ as $\mathcal{N}(\bm{A}\bm{x} + \bm{b}|\, \bm{\mu}, \bm{\Sigma})$. This distribution can be expressed on the original data point by transforming the parameters $\bm{\mu}, \bm{\Sigma}$ instead :
$$\mathcal{N}(\bm{A}\bm{x} + \bm{b}|\, \bm{\mu}, \bm{\Sigma}) = \mathcal{N}(\bm{x} |\, \bm{\mu}_{transf}, \bm{\Sigma}_{transf})$$
with
$$\bm{\mu}_{transf} = \bm{A}^\dagger (\bm{\mu}-\bm{b})$$
$$\bm{\Lambda}_{transf} = \bm{A}^\trsp\bm{\Lambda} \bm{A}$$
$$\bm{\Sigma}_{transf} = \bm{\Lambda}_{transf}^{-1}$$
see [Liu](http://www.cs.columbia.edu/~liulp/pdf/linear_normal_dist.pdf) for more precision. **WARNING** The transformation here are not the same as in the paper, they are the inverse.
%% Cell type:code id: tags:
``` python
# create distribution
mvn = pbd.MVN(mu=np.array([1., 3.]), sigma=np.diag([0.1, 2.]))
# plot distribution
plt.axes().set_aspect('equal')
pbd.plot_gmm(mvn.mu, mvn.sigma)
# transformation
rot_mat = pbd.utils.angle_to_rotation(np.pi/2) # create rotation matrix from angle
mvn = mvn.transform(A=rot_mat, b=np.array([0., -2.])) # apply the transformation on the distribution
pbd.plot_gmm(mvn.mu, mvn.sigma, color='y');
```
%%%% Output: display_data
![]()
![]()
%% Cell type:markdown id: tags:
## Product
Suppose we want to combine evidences from multiples experts, whose belief is expressed as probability distributions with parameters $\bm{\theta}^{(j)}$ for expert $j$. One way to combine this distribution to get the best agreement between the expert is to make the product of them, see [Hinton](http://www.cs.toronto.edu/~hinton/absps/nccd.pdf).
\begin{equation}
p(\bm{\xi}_t|\bm{\theta}^{(1)}, \ldots, \bm{\theta}^{(P)}) =
\frac{\prod_j p_j(\bm{\xi}_t\,| \bm{\theta}^{(j)})}
{\int_x \prod_j p_j(\bm{x}\,| \bm{\theta}^{(j)})}
\end{equation}
%% Cell type:markdown id: tags:
If the expert distributions are Gaussian with $\bm{\theta}^{(j)}=\{\bm{\mu}^{(j)}, \bm{\Sigma}^{(j)}\}$, the product as an analytical solution and is Gaussian as well. With
$\bm{\Lambda} = \bm{\Sigma}^{-1}$
$\bm{\Lambda} = \sum_j {\bm{\Lambda}}^{(j)}$
$\bm{\mu} = \bm{\Lambda}^{-1 }\sum_j {\bm{\Lambda}}^{(j)} {\bm{\mu}}^{(j)}$
See [Bromiley](http://www.tina-vision.net/docs/memos/2003-003.pdf) for more precision.
%% Cell type:code id: tags:
``` python
mvn = pbd.MVN(mu=np.array([1., 3.]), sigma=np.diag([0.1, 2.]))
mvn_2 = pbd.MVN(mu=np.array([2., 0.]), sigma=np.diag([10., 0.02]))
mvn_product = mvn * mvn_2
plt.axes().set_aspect('equal')
pbd.plot_gmm(mvn.mu, mvn.sigma)
pbd.plot_gmm(mvn_2.mu, mvn_2.sigma, color='y')
pbd.plot_gmm(mvn_product.mu, mvn_product.sigma, color='b');
```
%%%% Output: display_data
![]()
![]()
%% Cell type:markdown id: tags:
# Gaussian Mixture Model (GMM)
This is an example on how to create a Gaussian Mixture model and train it over some data.
%% Cell type:code id: tags:
``` python
from scipy.io import loadmat # loading data from matlab
letter = 'C' # choose a letter in the alphabet
datapath = os.path.dirname(pbd.__file__) + '/data/2Dletters/'
data = loadmat(datapath + '%s.mat' % letter)
demos = [d['pos'][0][0].T for d in data['demos'][0]] # cleaning awful matlab data
```
%% Cell type:code id: tags:
``` python
model = pbd.GMM(nb_dim=2, nb_states=4)
data = np.concatenate(demos)
model.em(data=data, reg=1e-3)
plt.figure(figsize=(2,2))
for p in demos:
plt.plot(p[:, 0], p[:, 1])
pbd.plot_gmm(model.mu, model.sigma);
```
%%%% Output: stream
GMM did not converge before reaching max iteration. Consider augmenting the number of max iterations.
%%%% Output: display_data
![]()
![]()
%% Cell type:markdown id: tags:
# Hidden Markov Model (HMM)
%% Cell type:code id: tags:
``` python
model = pbd.HMM(nb_states=4, nb_dim=2)
model.init_hmm_kbins(demos) # initializing model
# plotting
fig, ax = plt.subplots(ncols=2)
fig.set_size_inches(5,2.5)
pbd.plot_gmm(model.mu, model.sigma, alpha=0.5, color='steelblue', ax=ax[0]); # plot after init only
# EM to train model
model.em(demos, reg=1e-3)
# plotting demos
for p in demos:
ax[0].plot(p[:, 0], p[:, 1])
pbd.plot_gmm(model.mu, model.sigma, ax=ax[0]);
# plotting transition matrix
ax[1].imshow(np.log(model.Trans+1e-10), interpolation='nearest', vmin=-5, cmap='viridis');
plt.tight_layout()
```
%%%% Output: stream
EM did not converge
%%%% Output: display_data
![]()
![]()
%% Cell type:markdown id: tags:
#### Compute most likely sequence of state with Viterbi and forward variable
%% Cell type:code id: tags:
``` python
q = model.viterbi(demos[1])
alpha, _, _, _, _ = model.compute_messages(demos[1])
plt.figure(figsize=(5, 1))
plt.plot(q, lw=3);
plt.plot(alpha.T * (model.nb_states-0.1), lw=1);
plt.xlabel('timestep');
```
%%%% Output: display_data
![]()
![]()
%% Cell type:markdown id: tags:
#### Compute likelihood of HMM model for given demo
This can be used for action recognition when considering multiple HMMs corresponding to different actions.
%% Cell type:code id: tags:
``` python
score = model.score(demos)
print score
print(score)
```
%%%% Output: stream
[604.77532650710077, 622.21722294986239, 690.36818465333215, 627.90848472088783, 687.86406780327115, 671.99491016173624, 714.6971630615808, 765.40881580123289, 653.04279562616421, 635.65783418611136, 644.3801285840027, 643.07362870797783, 669.93546349681139, 627.19016919356841]
[604.6126291210751,
615.4742325655292,
676.9734162587175,
628.3800469230067,
692.0712916907947,
676.734947027159,
706.0265046373031,
757.6929194837971,
639.183185782786,
627.6829986051359,
639.7431497857071,
636.7105802407547,
670.0450601922861,
634.3556249319649]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment