demo_DMP_GMR_LQR01.m 7.81 KB
Newer Older
Sylvain Calinon's avatar
Sylvain Calinon committed
1
function demo_DMP_GMR_LQR01
2 3 4 5 6 7 8 9 10 11 12 13 14
% Enhanced dynamic movement primitive (DMP) model trained with EM by using a Gaussian mixture 
% model (GMM) representation, with full covariance matrices coordinating the different variables 
% in the feature space, and by using the task-parameterized model formalism. After learning 
% (i.e., autonomous organization of the basis functions (position and spread), Gaussian mixture 
% regression (GMR) is used to regenerate the path of a spring-damper system, resulting in a 
% nonlinear force profile. The gains of the spring-damper system are further refined by LQR 
% based on the retrieved covariance information.  
%
% Writing code takes time. Polishing it and making it available to others takes longer! 
% If some parts of the code were useful for your research of for a better understanding 
% of the algorithms, please reward the authors by citing the related publications, 
% and consider making your own research available in this way.
%
15
% @article{Calinon16JIST,
16 17 18
%   author="Calinon, S.",
%   title="A Tutorial on Task-Parameterized Movement Learning and Retrieval",
%   journal="Intelligent Service Robotics",
19 20 21 22 23 24
%		publisher="Springer Berlin Heidelberg",
%		doi="10.1007/s11370-015-0187-9",
%		year="2016",
%		volume="9",
%		number="1",
%		pages="1--29"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
% }
% 
% Copyright (c) 2015 Idiap Research Institute, http://idiap.ch/
% Written by Sylvain Calinon, http://calinon.ch/
% 
% This file is part of PbDlib, http://www.idiap.ch/software/pbdlib/
% 
% PbDlib is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License version 3 as
% published by the Free Software Foundation.
% 
% PbDlib is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
% 
% You should have received a copy of the GNU General Public License
% along with PbDlib. If not, see <http://www.gnu.org/licenses/>.
Sylvain Calinon's avatar
Sylvain Calinon committed
43 44 45

addpath('./m_fcts/');

46

Sylvain Calinon's avatar
Sylvain Calinon committed
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
%% Parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
model.nbStates = 5; %Number of states in the GMM
model.nbVar = 3; %Number of variables [s,F1,F2] (decay term and perturbing force)
model.nbFrames = 1; %Number of candidate frames of reference (centered on goal position)
model.kP = 50; %Stiffness gain
model.kV = (2*model.kP)^.5; %Damping gain (with ideal underdamped damping ratio)
model.alpha = 1.0; %Decay factor
model.dt = 0.01; %Duration of time step
model.nbVarPos = model.nbVar-1; %Dimension of spatial variables
model.rFactor = 5E-5; %Weighting term for the minimization of control commands in LQR
nbData = 200; %Number of datapoints in a trajectory
nbSamples = 4; %Number of demonstrations

%Canonical system parameters
A = kron([0 1; 0 0], eye(model.nbVarPos)); %See Eq. (5.1.1) in doc/TechnicalReport.pdf
B = kron([0; 1], eye(model.nbVarPos)); %See Eq. (5.1.1) in doc/TechnicalReport.pdf
C = kron([1,0],eye(model.nbVarPos));
%Discretize system (Euler method)
Ad = A*model.dt + eye(size(A));
Bd = B*model.dt;
%Control cost matrix
R = eye(model.nbVar) * model.rFactor;
R = kron(eye(nbData),R);

%Create transformation matrix to compute xhat = x + dx*kV/kP + ddx/kP, see Eq. (4.0.2) in doc/TechnicalReport.pdf
K1d = [1, model.kV/model.kP, 1/model.kP];
K = kron(K1d,eye(model.nbVarPos));


77
%% Load handwriting data
Sylvain Calinon's avatar
Sylvain Calinon committed
78 79
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
demos=[];
80
load('data/2Dletters/G.mat');
Sylvain Calinon's avatar
Sylvain Calinon committed
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
sIn(1) = 1; %Initialization of decay term
for t=2:nbData
	sIn(t) = sIn(t-1) - model.alpha * sIn(t-1) * model.dt; %Update of decay term (ds/dt=-alpha s)
end
DataDMP = zeros(model.nbVar,1,nbData*nbSamples);
Data=[];
for n=1:nbSamples
	%Task parameters (canonical coordinate system centered on the end-trajectory target)
	s(n).p(1).A = eye(model.nbVar);
	s(n).p(1).b = [0; demos{n}.pos(:,end)];
	%Demonstration data as [x;dx;ddx]
	s(n).Data = spline(1:size(demos{n}.pos,2), demos{n}.pos, linspace(1,size(demos{n}.pos,2),nbData)); %Resampling
	Data = [Data s(n).Data]; %Original data
	s(n).Data = [s(n).Data; gradient(s(n).Data)/model.dt]; %Velocity computation
	s(n).Data = [s(n).Data; gradient(s(n).Data(end-model.nbVarPos+1:end,:))/model.dt]; %Acceleration computation
	s(n).Data = [sIn; K*s(n).Data]; %xhat computation
	s(n).Data = s(n).p(1).A \ (s(n).Data - repmat(s(n).p(1).b,1,nbData)); %Observation from the perspective of the frame
	DataDMP(:,1,(n-1)*nbData+1:n*nbData) = s(n).Data; %Training data as [s;xhat]
end


%% Learning and reproduction
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%model = init_tensorGMM_kmeans(DataDMP, model); 
model = init_tensorGMM_timeBased(DataDMP, model); 
model = EM_tensorGMM(DataDMP, model);

%Task-adaptive spring-damper attractor path retrieval
r(n).p(1).A = eye(model.nbVar);
r(n).p(1).b = s(n).p(1).b + [0; 0; 5]; %Offset added to test generalization capability
[r(n).Mu, r(n).Sigma] = productTPGMM0(model, r(n).p); %See Eq. (6.0.5), (6.0.6) and (6.0.7) in doc/TechnicalReport.pdf
r(n).Priors = model.Priors;
r(n).nbStates = model.nbStates;
[r(1).currTar, r(1).currSigma] = GMR(r(n), sIn, 1, 2:model.nbVar); %See Eq. (3.0.2) to (3.0.5) in doc/TechnicalReport.pdf

%LQR tracking (discrete version)
Q = zeros(model.nbVarPos*2, model.nbVarPos*2);
R = eye(model.nbVarPos) * model.rFactor;
P = zeros(model.nbVarPos*2, model.nbVarPos*2, nbData);
P(1:model.nbVarPos,1:model.nbVarPos,end) = inv(r(1).currSigma(:,:,nbData));
for t=nbData-1:-1:1
	Q(1:model.nbVarPos,1:model.nbVarPos) = inv(r(1).currSigma(:,:,t));
	P(:,:,t) = Q - Ad' * (P(:,:,t+1) * Bd / (Bd' * P(:,:,t+1) * Bd + R) * Bd' * P(:,:,t+1) - P(:,:,t+1)) * Ad;
end
%Motion retrieval 
x = Data(1:model.nbVarPos,1);
dx = zeros(model.nbVarPos,1);
for t=1:nbData
	K = (Bd' * P(:,:,t) * Bd + R) \ Bd' * P(:,:,t) * Ad;
	ddx = K * ([r(1).currTar(:,t); zeros(model.nbVarPos,1)] - [x; dx]);
	dx = dx + ddx * model.dt;
	x = x + dx * model.dt;
	r(1).Data(:,t) = x;
end	

%% Plots
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure('position',[10,10,1300,450],'color',[1 1 1]); 
xx = round(linspace(1,64,model.nbStates));
clrmap = colormap('jet')*0.5;
clrmap = min(clrmap(xx,:),.9);

%Activation of the basis functions
for i=1:model.nbStates
	h(i,:) = model.Priors(i) * gaussPDF(sIn, model.Mu(1,i), model.Sigma(1,1,i));
end
h = h ./ repmat(sum(h,1)+realmin, model.nbStates, 1);

%Spatial plot
subplot(2,4,[1,5]); hold on; axis off;
plot(Data(1,:), Data(2,:), '.','markersize',8,'color',[.7 .7 .7]);
plot(r(1).currTar(1,:), r(1).currTar(2,:), '-','linewidth',2,'color',[1 .7 .7]); %Attractor path
plot(r(1).Data(1,:), r(1).Data(2,:), '-','linewidth',3,'color',[.8 0 0]); %Retrieved path
plot(r(n).p(1).b(2), r(n).p(1).b(3), 'k+','linewidth',2,'markersize',12);
axis equal; 

%Timeline plot of the nonlinear perturbing force
subplot(2,4,[2:4]); hold on;
for n=1:nbSamples
	plot(sIn, DataDMP(2,(n-1)*nbData+1:n*nbData), '-','linewidth',2,'color',[.7 .7 .7]);
end
for i=1:model.nbStates
	plotGMM(model.Mu(1:2,i), model.Sigma(1:2,1:2,i), clrmap(i,:), .7);
end
plot(sIn, r(1).currTar(1,:), '-','linewidth',2,'color',[.8 0 0]);
axis([0 1 min(DataDMP(2,:)) max(DataDMP(2,:))]);
ylabel('$\hat{x}_1$','fontsize',16,'interpreter','latex');
view(180,-90);

%Timeline plot of the basis functions activation
subplot(2,4,[6:8]); hold on;
for i=1:model.nbStates
	patch([sIn(1), sIn, sIn(end)], [0, h(i,:), 0], min(clrmap(i,:)+0.5,1), 'EdgeColor', 'none', 'facealpha', .4);
	plot(sIn, h(i,:), 'linewidth', 2, 'color', min(clrmap(i,:)+0.2,1));
end
axis([0 1 0 1]);
xlabel('$s$','fontsize',16,'interpreter','latex'); 
ylabel('$h$','fontsize',16,'interpreter','latex');
view(180,-90);

%print('-dpng','graphs/demo_DMP_GMR_LQR01.png');
pause;
close all;