benchmark_DS_PGMM01.m 8.91 KB
Newer Older
1
function benchmark_DS_PGMM01
2 3
% Benchmark of task-parameterized model based on parametric Gaussianvmixture model, 
% and DS-GMR used for reproduction.
Sylvain Calinon's avatar
Sylvain Calinon committed
4
%
5 6 7 8
% Writing code takes time. Polishing it and making it available to others takes longer! 
% If some parts of the code were useful for your research of for a better understanding 
% of the algorithms, please reward the authors by citing the related publications, 
% and consider making your own research available in this way.
Sylvain Calinon's avatar
Sylvain Calinon committed
9
%
10
% @article{Calinon16JIST,
Sylvain Calinon's avatar
Sylvain Calinon committed
11
%   author="Calinon, S.",
12 13
%   title="A Tutorial on Task-Parameterized Movement Learning and Retrieval",
%   journal="Intelligent Service Robotics",
14 15 16 17 18 19
%		publisher="Springer Berlin Heidelberg",
%		doi="10.1007/s11370-015-0187-9",
%		year="2016",
%		volume="9",
%		number="1",
%		pages="1--29"
Sylvain Calinon's avatar
Sylvain Calinon committed
20
% }
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
% 
% Copyright (c) 2015 Idiap Research Institute, http://idiap.ch/
% Written by Sylvain Calinon, http://calinon.ch/
% 
% This file is part of PbDlib, http://www.idiap.ch/software/pbdlib/
% 
% PbDlib is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License version 3 as
% published by the Free Software Foundation.
% 
% PbDlib is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
% 
% You should have received a copy of the GNU General Public License
% along with PbDlib. If not, see <http://www.gnu.org/licenses/>.
38 39 40

addpath('./m_fcts/');

Sylvain Calinon's avatar
Sylvain Calinon committed
41

42 43 44 45 46 47 48 49 50
%% Parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
model.nbStates = 3; %Number of Gaussians in the GMM
model.nbFrames = 2; %Number of candidate frames of reference
model.nbVar = 3; %Dimension of the datapoints in the dataset (here: t,x1,x2)
model.dt = 0.01; %Time step
model.kP = 100; %Stiffness gain
model.kV = (2*model.kP)^.5; %Damping gain (with ideal underdamped damping ratio)
nbRepros = 4; %Number of reproductions with new situations randomly generated
Sylvain Calinon's avatar
Sylvain Calinon committed
51 52
nbVarOut = model.nbVar-1; %(here, x1,x2)
L = [eye(nbVarOut)*model.kP, eye(nbVarOut)*model.kV]; %Feedback gains
53 54 55 56 57 58 59 60 61


%% Load 3rd order tensor data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('Load 3rd order tensor data...');
% The MAT file contains a structure 's' with the multiple demonstrations. 's(n).Data' is a matrix data for
% sample n (with 's(n).nbData' datapoints). 's(n).p(m).b' and 's(n).p(m).A' contain the position and
% orientation of the m-th candidate coordinate system for this demonstration. 'Data' contains the observations
% in the different frames. It is a 3rd order tensor of dimension D x P x N, with D=3 the dimension of a
Sylvain Calinon's avatar
Sylvain Calinon committed
62 63
% datapoint, P=2 the number of candidate frames, and N=TM the number of datapoints in a trajectory (T=200)
% multiplied by the number of demonstrations (M=5).
64 65 66 67 68 69 70 71 72 73 74 75
load('data/DataLQR01.mat');


%% Transformation of 'Data' to learn the path of the spring-damper system
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nbD = s(1).nbData;
%Create transformation matrix to compute [X; DX; DDX]
D = (diag(ones(1,nbD-1),-1)-eye(nbD)) / model.dt;
D(end,end) = 0;
%Create transformation matrix to compute XHAT = X + DX*kV/kP + DDX/kP
K1d = [1, model.kV/model.kP, 1/model.kP];
K = kron(K1d,eye(nbVarOut));
Sylvain Calinon's avatar
Sylvain Calinon committed
76
%Compute derivatives
77 78 79 80 81 82 83 84 85 86 87 88
Data = [];
for n=1:nbSamples
	DataTmp = s(n).Data0(2:end,:);
	s(n).Data = [s(n).Data0(1,:); K * [DataTmp; DataTmp*D; DataTmp*D*D]];
	Data = [Data s(n).Data];
end


%% PGMM learning
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf('Parameters estimation of PGMM with EM:');
for n=1:nbSamples	
Sylvain Calinon's avatar
Sylvain Calinon committed
89
% 	%Task parameters rearranged as a vector (position and orientation), see Eq. (48) 
90
% 	s(n).OmegaMu = [s(n).p(1).b(2:3); s(n).p(1).A(2:3,3); s(n).p(2).b(2:3); s(n).p(2).A(2:3,3); 1];
Sylvain Calinon's avatar
Sylvain Calinon committed
91 92

	%Task parameters rearranged as a vector (position only), see Eq. (48) 
93 94 95 96 97 98 99
	s(n).OmegaMu = [s(n).p(1).b(2:3); s(n).p(2).b(2:3); 1];
end

% %Initialization of model parameters
% %model = init_GMM_kmeans(Data, model);
% model = init_GMM_timeBased(Data, model);
% model = EM_GMM(Data, model);
Sylvain Calinon's avatar
Sylvain Calinon committed
100

101 102 103 104
for i=1:model.nbStates
% 	%Initialization of parameters based on standard GMM
% 	model.ZMu(:,:,i) = zeros(model.nbVar, size(s(1).OmegaMu,1));
% 	model.ZMu(:,end,i) = model.Mu(:,i);
Sylvain Calinon's avatar
Sylvain Calinon committed
105

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
		%Random initialization of parameters
		model.ZMu(:,:,i) = rand(model.nbVar,size(s(1).OmegaMu,1));
		model.Sigma(:,:,i) = eye(model.nbVar);
end
model.Priors = ones(model.nbStates) / model.nbStates; %Useful when using random initialization of parameters

%PGMM parameters estimation
model = EM_stdPGMM(s, model);


%% Reproduction with PGMM and DS-GMR for the task parameters used to train the model
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('Reproductions with DS-GMR...');
DataIn = [1:s(1).nbData] * model.dt;
nbVarOut = model.nbVar-1;
for n=1:nbSamples
	%Computation of the resulting Gaussians (for display purpose)
	for i=1:model.nbStates
Sylvain Calinon's avatar
Sylvain Calinon committed
124
		model.Mu(:,i) = model.ZMu(:,:,i) * s(n).OmegaMu; %Temporary Mu variable, see Eq. (48) 
125 126
	end
	r(n).Mu = model.Mu;
Sylvain Calinon's avatar
Sylvain Calinon committed
127
	
128
% 	%Retrieval of attractor path through GMR
Sylvain Calinon's avatar
Sylvain Calinon committed
129
% 	currTar = GMR(model, DataIn, 1, [2:model.nbVar]); %See Eq. (17)-(19)
130 131 132 133 134
% 	%Motion retrieval with spring-damper system
% 	x = s(n).p(1).b(2:model.nbVar);
% 	dx = zeros(nbVarOut,1);
% 	for t=1:s(n).nbData
% 		%Compute acceleration, velocity and position
Sylvain Calinon's avatar
Sylvain Calinon committed
135
% 		ddx =  -L * [x-currTar(:,t); dx]; 
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
% 		dx = dx + ddx * model.dt;
% 		x = x + dx * model.dt;
% 		r(n).Data(:,t) = x;
% 	end
end


%% Reproduction with PGMM and DS-GMR for new task parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('New reproductions with DS-GMR...');
load('data/taskParams.mat'); %Load new task parameters (new situation)
for n=1:nbRepros
	rnew(n).p = taskParams(n).p;
	
% 	%Task parameters re-arranged as a vector (position and orientation), see Eq. (7.1.4) in doc/TechnicalReport.pdf
% 	rnew(n).OmegaMu = [rnew(n).p(1).b(2:3); rnew(n).p(1).A(2:3,3); rnew(n).p(2).b(2:3); rnew(n).p(2).A(2:3,3); 1];
Sylvain Calinon's avatar
Sylvain Calinon committed
152

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	%Task parameters re-arranged as a vector (position only), see Eq. (7.1.4) in doc/TechnicalReport.pdf
	rnew(n).OmegaMu = [rnew(n).p(1).b(2:3); rnew(n).p(2).b(2:3); 1];
	
	%Computation of the resulting Gaussians (for display purpose)
	for i=1:model.nbStates
		model.Mu(:,i) = model.ZMu(:,:,i) * rnew(n).OmegaMu; %Temporary Mu variable, see Eq. (7.1.4) in doc/TechnicalReport.pdf
	end
	rnew(n).Mu = model.Mu;
	%Retrieval of attractor path through GMR
	[rnew(n).currTar, rnew(n).currSigma] = GMR(model, DataIn, 1, [2:model.nbVar]); %See Eq. (3.0.2) to (3.0.5) in doc/TechnicalReport.pdf
	%Motion retrieval with spring-damper system
	x = rnew(n).p(1).b(2:model.nbVar);
	dx = zeros(nbVarOut,1);
	for t=1:nbD
		%Compute acceleration, velocity and position
		ddx =  -L * [x-rnew(n).currTar(:,t); dx]; %See Eq. (4.0.1) in doc/TechnicalReport.pdf
		dx = dx + ddx * model.dt;
		x = x + dx * model.dt;
		rnew(n).Data(:,t) = x;
	end
end


%% Plots
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure('PaperPosition',[0 0 4 3],'position',[20,50,600,450]);
axes('Position',[0 0 1 1]); axis off; hold on;
set(0,'DefaultAxesLooseInset',[0,0,0,0]);
limAxes = [-1.5 2.5 -1.6 1.4]*.8;
myclr = [0.2863 0.0392 0.2392; 0.9137 0.4980 0.0078; 0.7412 0.0824 0.3137];

%Plot demonstrations
plotPegs(s(1).p(1), myclr(1,:), .1);
for n=1:nbSamples
	plotPegs(s(n).p(2), myclr(2,:), .1);
	patch([s(n).Data0(2,1:end) s(n).Data0(2,end:-1:1)], [s(n).Data0(3,1:end) s(n).Data0(3,end:-1:1)],...
		[1 1 1],'linewidth',1.5,'edgecolor',[0 0 0],'facealpha',0,'edgealpha',0.04);
end
for n=1:nbSamples
	plotGMM(r(n).Mu(2:3,:),model.Sigma(2:3,2:3,:), [0 0 0], .04);
end
axis equal; axis(limAxes);
Sylvain Calinon's avatar
Sylvain Calinon committed
195
%print('-dpng','-r600','graphs/benchmark_DS_PGMM01.png');
196 197

%Plot reproductions in new situations
Sylvain Calinon's avatar
Sylvain Calinon committed
198
disp('[Press enter to see next reproduction attempt]');
199 200 201 202 203 204 205 206 207 208
h=[];
for n=1:nbRepros
	delete(h);
	h = plotPegs(rnew(n).p);
	h = [h plotGMM(rnew(n).currTar, rnew(n).currSigma,  [0 .8 0], .2)];
	h = [h plotGMM(rnew(n).Mu(2:3,:), model.Sigma(2:3,2:3,:),  myclr(3,:), .6)];
	h = [h patch([rnew(n).Data(1,:) rnew(n).Data(1,fliplr(1:nbD))], [rnew(n).Data(2,:) rnew(n).Data(2,fliplr(1:nbD))],...
		[1 1 1],'linewidth',1.5,'edgecolor',[0 0 0],'facealpha',0,'edgealpha',0.4)];
	h = [h plot(rnew(n).Data(1,1), rnew(n).Data(2,1),'.','markersize',12,'color',[0 0 0])];
	axis equal; axis(limAxes);
Sylvain Calinon's avatar
Sylvain Calinon committed
209 210
	%print('-dpng','-r600',['graphs/benchmark_DS_PGMM' num2str(n+1,'%.2d') '.png']);
	pause;
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
end

pause;
close all;

end

%Function to plot pegs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = plotPegs(p, colPegs, fa)
if ~exist('colPegs')
	colPegs = [0.2863 0.0392 0.2392; 0.9137 0.4980 0.0078];
	fa = 0.4;
end
pegMesh = [-4 -3.5; -4 10; -1.5 10; -1.5 -1; 1.5 -1; 1.5 10; 4 10; 4 -3.5; -4 -3.5]' *1E-1;
for m=1:length(p)
	dispMesh = p(m).A(2:3,2:3) * pegMesh + repmat(p(m).b(2:3),1,size(pegMesh,2));
	h(m) = patch(dispMesh(1,:),dispMesh(2,:),colPegs(m,:),'linewidth',1,'edgecolor','none','facealpha',fa);
end
end