demo_iterativeLQR_augmSigma01.m 8.16 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
function demo_iterativeLQR_augmSigma01
% Iterative LQR with augmented covariance to transform the tracking problem to a regulation problem.
%
% Writing code takes time. Polishing it and making it available to others takes longer! 
% If some parts of the code were useful for your research of for a better understanding 
% of the algorithms, please reward the authors by citing the related publications, 
% and consider making your own research available in this way.
%
% @article{Calinon16JIST,
%   author="Calinon, S.",
%   title="A Tutorial on Task-Parameterized Movement Learning and Retrieval",
%   journal="Intelligent Service Robotics",
%		publisher="Springer Berlin Heidelberg",
%		doi="10.1007/s11370-015-0187-9",
%		year="2016",
%		volume="9",
%		number="1",
%		pages="1--29"
% }
% 
% Copyright (c) 2016 Idiap Research Institute, http://idiap.ch/
% Written by Sylvain Calinon (http://calinon.ch/) and Danilo Bruno (danilo.bruno@iit.it)
% 
% This file is part of PbDlib, http://www.idiap.ch/software/pbdlib/
% 
% PbDlib is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License version 3 as
% published by the Free Software Foundation.
% 
% PbDlib is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
% 
% You should have received a copy of the GNU General Public License
% along with PbDlib. If not, see <http://www.gnu.org/licenses/>.

addpath('./m_fcts/');


%% Parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
model.nbStates = 5; %Number of Gaussians in the GMM
model.nbVarPos = 2; %Dimension of position data (here: x1,x2)
model.nbDeriv = 2; %Number of static and dynamic features (nbDeriv=2 for [x,dx] and u=ddx)
model.nbVar = model.nbVarPos * model.nbDeriv; %Dimension of state vector
model.dt = 0.01; %Time step duration
model.rfactor = 0.1 * model.dt^model.nbDeriv;	%Control cost in LQR
nbSamples = 3; %Number of demonstrations
nbRepros = 5; %Number of reproductions
nbData = 200; %Number of datapoints

%Control cost matrix
R = eye(model.nbVarPos) * model.rfactor;


%% Dynamical System settings (discrete version)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %Integration with Euler method 
% Ac1d = diag(ones(model.nbDeriv-1,1),1); 
% Bc1d = [zeros(model.nbDeriv-1,1); 1];
% A0 = kron(eye(model.nbDeriv)+Ac1d*model.dt, eye(model.nbVarPos)); 
% B0 = kron(Bc1d*model.dt, eye(model.nbVarPos));

%Integration with higher order Taylor series expansion
A1d = zeros(model.nbDeriv);
for i=0:model.nbDeriv-1
	A1d = A1d + diag(ones(model.nbDeriv-i,1),i) * model.dt^i * 1/factorial(i); %Discrete 1D
end
B1d = zeros(model.nbDeriv,1); 
for i=1:model.nbDeriv
	B1d(model.nbDeriv-i+1) = model.dt^i * 1/factorial(i); %Discrete 1D
end
A0 = kron(A1d, eye(model.nbVarPos)); %Discrete nD
B0 = kron(B1d, eye(model.nbVarPos)); %Discrete nD

% %Conversion with control toolbox
% Ac1d = diag(ones(model.nbDeriv-1,1),1); %Continuous 1D
% Bc1d = [zeros(model.nbDeriv-1,1); 1]; %Continuous 1D
% Cc1d = [1, zeros(1,model.nbDeriv-1)]; %Continuous 1D
% sysd = c2d(ss(Ac1d,Bc1d,Cc1d,0), model.dt);
% A0 = kron(sysd.a, eye(model.nbVarPos)); %Discrete nD
% B0 = kron(sysd.b, eye(model.nbVarPos)); %Discrete nD

A = [A0, zeros(model.nbVar,1); zeros(1,model.nbVar), 1]; %Augmented A
B = [B0; zeros(1,model.nbVarPos)]; %Augmented B


%% Load handwriting data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load('data/2Dletters/G.mat');
Data=[];
for n=1:nbSamples
	s(n).Data=[];
	for m=1:model.nbDeriv
		if m==1
			dTmp = spline(1:size(demos{n}.pos,2), demos{n}.pos, linspace(1,size(demos{n}.pos,2),nbData)); %Resampling
		else
			dTmp = gradient(dTmp) / model.dt; %Compute derivatives
		end
		s(n).Data = [s(n).Data; dTmp];
	end
	Data = [Data s(n).Data]; 
end


%% Learning
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%model = init_GMM_kmeans(Data,model);
model = init_GMM_kbins(Data,model,nbSamples);

% %Initialization based on position data
% model0 = init_GMM_kmeans(Data(1:model.nbVarPos,:), model);
% [~, GAMMA2] = EM_GMM(Data(1:model.nbVarPos,:), model0);
% model.Priors = model0.Priors;
% for i=1:model.nbStates
% 	model.Mu(:,i) = Data * GAMMA2(i,:)';
% 	DataTmp = Data - repmat(model.Mu(:,i),1,nbData*nbSamples);
% 	model.Sigma(:,:,i) = DataTmp * diag(GAMMA2(i,:)) * DataTmp';
% end

%Refinement of parameters
[model, H] = EM_GMM(Data, model);

%Transform model to the corresponding version with augmented covariance
model0 = model;
model.nbVar = model0.nbVar+1;
model.Mu = zeros(model.nbVar, model.nbStates);
model.Sigma = zeros(model.nbVar, model.nbVar, model.nbStates);
for i=1:model.nbStates
	model.Sigma(:,:,i) = [model0.Sigma(:,:,i)+model0.Mu(:,i)*model0.Mu(:,i)', model0.Mu(:,i); model0.Mu(:,i)', 1];
end


%% Iterative LQR with augmented state space
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Set list of states according to first demonstration (alternatively, an HSMM can be used)
[~,qList] = max(H(:,1:nbData),[],1); %works also for nbStates=1

P = zeros(model.nbVar,model.nbVar,nbData);
P(:,:,end) = inv(model.Sigma(:,:,qList(nbData)));
for t=nbData-1:-1:1
	Q = inv(model.Sigma(:,:,qList(t)));
	P(:,:,t) = Q - A' * (P(:,:,t+1) * B / (B' * P(:,:,t+1) * B + R) * B' * P(:,:,t+1) - P(:,:,t+1)) * A;
end
%Reproduction with only feedback (FB) terms on augmented state
for n=1:nbRepros
	if n==1
		X = [Data(:,1); 1];
	else
		X = [Data(:,1); 1] + [randn(model.nbVarPos,1)*2E0; zeros(model.nbVar-model.nbVarPos,1)];
	end
	r(n).X0 = X;
	for t=1:nbData
		r(n).Data(:,t) = X; %Log data
		K = (B' * P(:,:,t) * B + R) \ B' * P(:,:,t) * A; %FB term
		u = -K * X; %Acceleration command with FB terms on augmented state (resulting in FB and FF terms)
		X = A * X + B * u; %Update of state vector
	end
end


%% Iterative linear quadratic tracking (for comparison) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
P = zeros(model0.nbVar,model0.nbVar,nbData);
P(:,:,end) = inv(model0.Sigma(:,:,qList(nbData)));
d = zeros(model0.nbVar, nbData);
for t=nbData-1:-1:1
	Q = inv(model0.Sigma(:,:,qList(t)));
	P(:,:,t) = Q - A0' * (P(:,:,t+1) * B0 / (B0' * P(:,:,t+1) * B0 + R) * B0' * P(:,:,t+1) - P(:,:,t+1)) * A0;
	d(:,t) = (A0' - A0'*P(:,:,t+1) * B0 / (R + B0' * P(:,:,t+1) * B0) * B0' ) * (P(:,:,t+1) * (A0 * model0.Mu(:,qList(t)) - model0.Mu(:,qList(t+1))) + d(:,t+1));
end
%Reproduction with feedback (FB) and feedforward (FF) terms
for n=1:nbRepros
	X = r(n).X0(1:end-1);
	for t=1:nbData
		r2(n).Data(:,t) = X; %Log data
		K = (B0' * P(:,:,t) * B0 + R) \ B0' * P(:,:,t) * A0; %FB term
		M = -(B0' * P(:,:,t) * B0 + R) \ B0' * (P(:,:,t) * (A0 * model0.Mu(:,qList(t)) - model0.Mu(:,qList(t))) + d(:,t)); %FF term
		u = K * (model0.Mu(:,qList(t)) - X) + M; %Acceleration command with FB and FF terms
		X = A0 * X + B0 * u; %Update of state vector
	end
end


%% Plot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure('position',[10 10 1300 500],'color',[1 1 1]); 
%Plot position
subplot(1,2,1); hold on; 
plotGMM(model0.Mu(1:2,:), model0.Sigma(1:2,1:2,:), [0.5 0.5 0.5], .3);
for n=1:nbSamples
	plot(Data(1,(n-1)*nbData+1:n*nbData), Data(2,(n-1)*nbData+1:n*nbData), '-','color',[.7 .7 .7]);
end
for n=1:nbRepros
	h(1) = plot(r(n).Data(1,:), r(n).Data(2,:), '-','linewidth',2,'color',[.8 0 0]);
	h(2) = plot(r2(n).Data(1,:), r2(n).Data(2,:), '--','linewidth',2,'color',[0 .8 0]);
end
axis equal; 
xlabel('x_1'); ylabel('x_2');
legend(h,'LQR with augmented state space',' LQT with FB and FF terms');

%Plot velocity
subplot(1,2,2); hold on; 
plotGMM(model0.Mu(3:4,:), model0.Sigma(3:4,3:4,:), [0.5 0.5 0.5], .3);
for n=1:nbSamples
	plot(Data(3,(n-1)*nbData+1:n*nbData), Data(4,(n-1)*nbData+1:n*nbData), '-','color',[.7 .7 .7]);
end
for n=1:nbRepros
	plot(r(n).Data(3,:), r(n).Data(4,:), '-','linewidth',2,'color',[.8 0 0]); 
	plot(r(n).Data(3,1), r(n).Data(4,1), '.','markersize',18,'color',[.6 0 0]);
	plot(r2(n).Data(3,:), r2(n).Data(4,:), '--','linewidth',2,'color',[0 .8 0]);
end
plot(0,0,'k+');
axis equal;
xlabel('dx_1'); ylabel('dx_2');


%print('-dpng','graphs/demo_iterativeLQR_augmSigma01.png');
%pause;
%close all;