benchmark_DS_TP_MFA01.m 6.82 KB
Newer Older
1
function benchmark_DS_TP_MFA01
2 3
% Benchmark of task-parameterized mixture of factor analyzers (TP-MFA), 
% with DS-GMR used for reproduction.
Sylvain Calinon's avatar
Sylvain Calinon committed
4
%
5 6 7 8
% Writing code takes time. Polishing it and making it available to others takes longer! 
% If some parts of the code were useful for your research of for a better understanding 
% of the algorithms, please reward the authors by citing the related publications, 
% and consider making your own research available in this way.
Sylvain Calinon's avatar
Sylvain Calinon committed
9
%
10
% @article{Calinon16JIST,
Sylvain Calinon's avatar
Sylvain Calinon committed
11
%   author="Calinon, S.",
12 13
%   title="A Tutorial on Task-Parameterized Movement Learning and Retrieval",
%   journal="Intelligent Service Robotics",
14 15 16 17 18 19
%		publisher="Springer Berlin Heidelberg",
%		doi="10.1007/s11370-015-0187-9",
%		year="2016",
%		volume="9",
%		number="1",
%		pages="1--29"
Sylvain Calinon's avatar
Sylvain Calinon committed
20
% }
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
% 
% Copyright (c) 2015 Idiap Research Institute, http://idiap.ch/
% Written by Sylvain Calinon, http://calinon.ch/
% 
% This file is part of PbDlib, http://www.idiap.ch/software/pbdlib/
% 
% PbDlib is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License version 3 as
% published by the Free Software Foundation.
% 
% PbDlib is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
% 
% You should have received a copy of the GNU General Public License
% along with PbDlib. If not, see <http://www.gnu.org/licenses/>.
38 39 40

addpath('./m_fcts/');

Sylvain Calinon's avatar
Sylvain Calinon committed
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
%% Parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
model.nbStates = 3; %Number of Gaussians in the GMM
model.nbFrames = 2; %Number of candidate frames of reference
model.nbVar = 3; %Dimension of the datapoints in the dataset (here: t,x1,x2)
model.nbFA = 1; %Dimension of factor analyzers
model.dt = 0.01; %Time step
model.kP = 100; %Stiffness gain
model.kV = (2*model.kP)^.5; %Damping gain (with ideal underdamped damping ratio)
nbRepros = 4; %Number of reproductions with new situations randomly generated


%% Load 3rd order tensor data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('Load 3rd order tensor data...');
% The MAT file contains a structure 's' with the multiple demonstrations. 's(n).Data' is a matrix data for
% sample n (with 's(n).nbData' datapoints). 's(n).p(m).b' and 's(n).p(m).A' contain the position and
% orientation of the m-th candidate coordinate system for this demonstration. 'Data' contains the observations
% in the different frames. It is a 3rd order tensor of dimension D x P x N, with D=3 the dimension of a
% datapoint, P=2 the number of candidate frames, and N=200x4 the number of datapoints in a trajectory (200)
% multiplied by the number of demonstrations (5).
load('data/DataLQR01.mat');


%% Transformation of 'Data' to learn the path of the spring-damper system
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nbD = s(1).nbData;
nbVarOut = model.nbVar - 1;
%Create transformation matrix to compute [X; DX; DDX]
D = (diag(ones(1,nbD-1),-1)-eye(nbD)) / model.dt;
D(end,end) = 0;
%Create transformation matrix to compute XHAT = X + DX*kV/kP + DDX/kP
K1d = [1, model.kV/model.kP, 1/model.kP];
K = kron(K1d,eye(nbVarOut));
%Create 3rd order tensor data with XHAT instead of X, see Eq. (4.0.2) in doc/TechnicalReport.pdf
Data = zeros(model.nbVar, model.nbFrames, nbD*nbSamples);
for n=1:nbSamples
	DataTmp = s(n).Data0(2:end,:);
	DataTmp = [s(n).Data0(1,:); K * [DataTmp; DataTmp*D; DataTmp*D*D]];
	for m=1:model.nbFrames
		Data(:,m,(n-1)*nbD+1:n*nbD) = s(n).p(m).A \ (DataTmp - repmat(s(n).p(m).b, 1, nbD));
	end
end


%% Tensor MFA learning
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf('Parameters estimation of tensor GMM with EM:');
%model = init_tensorGMM_kmeans(Data, model); %Initialization
model = init_tensorGMM_timeBased(Data, model); %Initialization
model = EM_tensorMFA(Data, model);


%% Reproduction for the task parameters used to train the model
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('Reproductions with DS-GMR...');
DataIn = [1:nbD] * model.dt;
for n=1:nbSamples
	%Retrieval of attractor path through task-parameterized GMR
	a(n) = estimateAttractorPath(DataIn, model, s(n));
	r(n) = reproduction_DS(DataIn, model, a(n), s(n).p(1).b(2:3));
end


%% Reproduction for new task parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('New reproductions with DS-GMR...');
load('data/taskParams.mat'); %Load new task parameters (new situation)
for n=1:nbRepros
	%Retrieval of attractor path through task-parameterized GMR
	anew(n) = estimateAttractorPath(DataIn, model, taskParams(n));
	rnew(n) = reproduction_DS(DataIn, model, anew(n), taskParams(n).p(1).b(2:3));
end


%% Plots
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure('PaperPosition',[0 0 4 3],'position',[20,50,600,450]);
axes('Position',[0 0 1 1]); axis off; hold on;
set(0,'DefaultAxesLooseInset',[0,0,0,0]);
limAxes = [-1.5 2.5 -1.6 1.4]*.8;
myclr = [0.2863 0.0392 0.2392; 0.9137 0.4980 0.0078; 0.7412 0.0824 0.3137];

%Plot demonstrations
plotPegs(s(1).p(1), myclr(1,:), .1);
for n=1:nbSamples
	plotPegs(s(n).p(2), myclr(2,:), .1);
	patch([s(n).Data0(2,1:end) s(n).Data0(2,end:-1:1)], [s(n).Data0(3,1:end) s(n).Data0(3,end:-1:1)],...
		[1 1 1],'linewidth',1.5,'edgecolor',[0 0 0],'facealpha',0,'edgealpha',0.04);
end
for n=1:nbSamples
	plotGMM(r(n).Mu(2:3,:),r(n).Sigma(2:3,2:3,:), [0 0 0], .04);
end
axis equal; axis(limAxes);
Sylvain Calinon's avatar
Sylvain Calinon committed
136
%print('-dpng','-r600','graphs/benchmark_DS_TP_MFA01.png');
137 138

%Plot reproductions in new situations
Sylvain Calinon's avatar
Sylvain Calinon committed
139
disp('[Press enter to see next reproduction attempt]');
140 141 142 143 144 145 146 147 148 149
h=[];
for n=1:nbRepros
	delete(h);
	h = plotPegs(rnew(n).p);
	h = [h plotGMM(rnew(n).currTar, anew(n).currSigma,  [0 .8 0], .2)];
	h = [h plotGMM(rnew(n).Mu(2:3,:), rnew(n).Sigma(2:3,2:3,:),  myclr(3,:), .6)];
	h = [h patch([rnew(n).Data(2,:) rnew(n).Data(2,fliplr(1:nbD))], [rnew(n).Data(3,:) rnew(n).Data(3,fliplr(1:nbD))],...
		[1 1 1],'linewidth',1.5,'edgecolor',[0 0 0],'facealpha',0,'edgealpha',0.4)];
	h = [h plot(rnew(n).Data(2,1), rnew(n).Data(3,1),'.','markersize',12,'color',[0 0 0])];
	axis equal; axis(limAxes);
Sylvain Calinon's avatar
Sylvain Calinon committed
150 151
	%print('-dpng','-r600',['graphs/benchmark_DS_TP_MFA' num2str(n+1,'%.2d') '.png']);
	pause;
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
end

pause;
close all;

end

%Function to plot pegs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = plotPegs(p, colPegs, fa)
if ~exist('colPegs')
	colPegs = [0.2863    0.0392    0.2392; 0.9137    0.4980    0.0078];
	fa = 0.4;
end
pegMesh = [-4 -3.5; -4 10; -1.5 10; -1.5 -1; 1.5 -1; 1.5 10; 4 10; 4 -3.5; -4 -3.5]' *1E-1;
for m=1:length(p)
	dispMesh = p(m).A(2:3,2:3) * pegMesh + repmat(p(m).b(2:3),1,size(pegMesh,2));
	h(m) = patch(dispMesh(1,:),dispMesh(2,:),colPegs(m,:),'linewidth',1,'edgecolor','none','facealpha',fa);
end
end