benchmark_DS_TP_GP01.m 7.46 KB
Newer Older
1
function benchmark_DS_TP_GP01
2
% Benchmark of task-parameterized Gaussian process (nonparametric task-parameterized method).
Sylvain Calinon's avatar
Sylvain Calinon committed
3
%
4 5 6 7
% Writing code takes time. Polishing it and making it available to others takes longer! 
% If some parts of the code were useful for your research of for a better understanding 
% of the algorithms, please reward the authors by citing the related publications, 
% and consider making your own research available in this way.
Sylvain Calinon's avatar
Sylvain Calinon committed
8
%
9
% @article{Calinon16JIST,
Sylvain Calinon's avatar
Sylvain Calinon committed
10
%   author="Calinon, S.",
11 12
%   title="A Tutorial on Task-Parameterized Movement Learning and Retrieval",
%   journal="Intelligent Service Robotics",
13 14 15 16 17 18
%		publisher="Springer Berlin Heidelberg",
%		doi="10.1007/s11370-015-0187-9",
%		year="2016",
%		volume="9",
%		number="1",
%		pages="1--29"
Sylvain Calinon's avatar
Sylvain Calinon committed
19
% }
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
% 
% Copyright (c) 2015 Idiap Research Institute, http://idiap.ch/
% Written by Sylvain Calinon, http://calinon.ch/
% 
% This file is part of PbDlib, http://www.idiap.ch/software/pbdlib/
% 
% PbDlib is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License version 3 as
% published by the Free Software Foundation.
% 
% PbDlib is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
% 
% You should have received a copy of the GNU General Public License
% along with PbDlib. If not, see <http://www.gnu.org/licenses/>.
37 38 39

addpath('./m_fcts/');

Sylvain Calinon's avatar
Sylvain Calinon committed
40

41 42 43 44 45 46 47 48
%% Parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
model.nbFrames = 2; %Number of candidate frames of reference
model.nbVar = 3; %Dimension of the datapoints in the dataset (here: t,x1,x2)
model.dt = 0.01; %Time step
model.kP = 100; %Stiffness gain
model.kV = (2*model.kP)^.5; %Damping gain (with ideal underdamped damping ratio)
nbRepros = 4; %Number of reproductions with new situations randomly generated
Sylvain Calinon's avatar
Sylvain Calinon committed
49 50
nbVarOut = model.nbVar-1; %(here, x1,x2)
L = [eye(nbVarOut)*model.kP, eye(nbVarOut)*model.kV]; %Feedback gains
51 52 53 54 55 56 57 58 59


%% Load 3rd order tensor data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('Load 3rd order tensor data...');
% The MAT file contains a structure 's' with the multiple demonstrations. 's(n).Data' is a matrix data for
% sample n (with 's(n).nbData' datapoints). 's(n).p(m).b' and 's(n).p(m).A' contain the position and
% orientation of the m-th candidate coordinate system for this demonstration. 'Data' contains the observations
% in the different frames. It is a 3rd order tensor of dimension D x P x N, with D=3 the dimension of a
Sylvain Calinon's avatar
Sylvain Calinon committed
60 61
% datapoint, P=2 the number of candidate frames, and N=TM the number of datapoints in a trajectory (T=200)
% multiplied by the number of demonstrations (M=5).
62 63 64 65 66 67 68 69 70 71 72 73
load('data/DataLQR01.mat');


%% Transformation of 'Data' to learn the path of the spring-damper system
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nbD = s(1).nbData;
%Create transformation matrix to compute [X; DX; DDX]
D = (diag(ones(1,nbD-1),-1)-eye(nbD)) / model.dt;
D(end,end) = 0;
%Create transformation matrix to compute XHAT = X + DX*kV/kP + DDX/kP
K1d = [1, model.kV/model.kP, 1/model.kP];
K = kron(K1d,eye(model.nbVar-1));
Sylvain Calinon's avatar
Sylvain Calinon committed
74
%Create 3rd order tensor data with XHAT instead of X
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Data = zeros(model.nbVar, model.nbFrames, nbD*nbSamples);
for n=1:nbSamples
	DataTmp = s(n).Data0(2:end,:);
	s(n).Data = [s(n).Data0(1,:); K * [DataTmp; DataTmp*D; DataTmp*D*D]];
	for m=1:model.nbFrames
		Data(:,m,(n-1)*nbD+1:n*nbD) = s(n).p(m).A \ (s(n).Data - repmat(s(n).p(m).b, 1, nbD));
		s(n).p(m).A = s(n).p(m).A(2:end,2:end);
		s(n).p(m).b = s(n).p(m).b(2:end);
	end
end


%% Reproduction with TP-GP for the task parameters used to train the model
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('Reproductions with TP-GP and spring-damper system...');
in=1; out=2:model.nbVar;
model.nbVar = model.nbVar-1;
model.nbStates = nbD;
model.Priors = ones(model.nbStates,1) / model.nbStates;
for m=1:model.nbFrames
	DataIn(1,:) = squeeze(Data(in,m,:));
	DataOut = squeeze(Data(out,m,:));
	[MuTmp, SigmaTmp] = GPR(DataIn, DataOut, DataIn(1,1:nbD), [1E1, 1E2, 1E0]);
	model.Mu(:,m,:) = MuTmp;
	model.Sigma(:,:,m,:) = SigmaTmp;
end
Sylvain Calinon's avatar
Sylvain Calinon committed
101

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
%Reproduction with spring-damper system
% for n=1:nbSamples
% 	currTar = productTPGMM0(model, s(n).p); %See Eq. (6.0.5), (6.0.6) and (6.0.7) in doc/TechnicalReport.pdf
% 
% 	%Motion retrieval with spring-damper system
% 	x = s(n).p(1).b;
% 	dx = zeros(model.nbVar,1);
% 	for t=1:s(n).nbData
% 		%Compute acceleration, velocity and position
% 		ddx =  -L * [x-currTar(:,t); dx]; %See Eq. (4.0.1) in doc/TechnicalReport.pdf
% 		dx = dx + ddx * model.dt;
% 		x = x + dx * model.dt;
% 		r(n).Data(:,t) = x;
% 	end
% end


%% Reproduction with TP-GP for new task parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('New reproductions with TP-GP and spring-damper system...');
load('data/taskParams.mat'); %Load new task parameters (new situation)
for n=1:nbRepros
	for m=1:model.nbFrames
		rnew(n).p(m).b = taskParams(n).p(m).b(2:end);
		rnew(n).p(m).A = taskParams(n).p(m).A(2:end,2:end);
	end
	[rnew(n).currTar, rnew(n).currSigma] = productTPGMM0(model, rnew(n).p); %See Eq. (6.0.5), (6.0.6) and (6.0.7) in doc/TechnicalReport.pdf

	%Motion retrieval with spring-damper system
	x = rnew(n).p(1).b;
	dx = zeros(model.nbVar,1);
	for t=1:nbD
		%Compute acceleration, velocity and position
		ddx =  -L * [x-rnew(n).currTar(:,t); dx]; %See Eq. (4.0.1) in doc/TechnicalReport.pdf 
		dx = dx + ddx * model.dt;
		x = x + dx * model.dt;
		rnew(n).Data(:,t) = x;
	end
end


%% Plots
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure('PaperPosition',[0 0 4 3],'position',[20,50,600,450]);
axes('Position',[0 0 1 1]); axis off; hold on;
set(0,'DefaultAxesLooseInset',[0,0,0,0]);
limAxes = [-1.5 2.5 -1.6 1.4]*.8;
myclr = [0.2863 0.0392 0.2392; 0.9137 0.4980 0.0078; 0.7412 0.0824 0.3137];

%Plot demonstrations
plotPegs(s(1).p(1), myclr(1,:), .1);
for n=1:nbSamples
	plotPegs(s(n).p(2), myclr(2,:), .1);
	patch([s(n).Data0(2,1:end) s(n).Data0(2,end:-1:1)], [s(n).Data0(3,1:end) s(n).Data0(3,end:-1:1)],...
		[1 1 1],'linewidth',1.5,'edgecolor',[0 0 0],'facealpha',0,'edgealpha',0.04);
end
axis equal; axis(limAxes);
Sylvain Calinon's avatar
Sylvain Calinon committed
159
%print('-dpng','-r600','graphs/benchmark_DS_TP_GP01.png');
160 161

%Plot reproductions in new situations
Sylvain Calinon's avatar
Sylvain Calinon committed
162
disp('[Press enter to see next reproduction attempt]');
163 164 165 166 167 168 169 170 171
h=[];
for n=1:nbRepros
	delete(h);
	h = plotPegs(rnew(n).p);
	h = [h plotGMM(rnew(n).currTar, rnew(n).currSigma,  [0 .8 0], .2)];
	h = [h patch([rnew(n).Data(1,:) rnew(n).Data(1,fliplr(1:nbD))], [rnew(n).Data(2,:) rnew(n).Data(2,fliplr(1:nbD))],...
		[1 1 1],'linewidth',1.5,'edgecolor',[0 0 0],'facealpha',0,'edgealpha',0.4)];
	h = [h plot(rnew(n).Data(1,1), rnew(n).Data(2,1),'.','markersize',12,'color',[0 0 0])];
	axis equal; axis(limAxes);
Sylvain Calinon's avatar
Sylvain Calinon committed
172 173
	%print('-dpng','-r600',['graphs/benchmark_DS_TP_GP' num2str(n+1,'%.2d') '.png']);
	pause
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
end

pause;
close all;

end

%Function to plot pegs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = plotPegs(p, colPegs, fa)
if ~exist('colPegs')
	colPegs = [0.2863    0.0392    0.2392; 0.9137    0.4980    0.0078];
	fa = 0.4;
end
pegMesh = [-4 -3.5; -4 10; -1.5 10; -1.5 -1; 1.5 -1; 1.5 10; 4 10; 4 -3.5; -4 -3.5]' *1E-1;
for m=1:length(p)
	dispMesh = p(m).A(1:2,1:2) * pegMesh + repmat(p(m).b(1:2),1,size(pegMesh,2));
	h(m) = patch(dispMesh(1,:),dispMesh(2,:),colPegs(m,:),'linewidth',1,'edgecolor','none','facealpha',fa);
end
end