EM_tensorHDGMM.m 3.88 KB
Newer Older
1
function model = EM_tensorHDGMM(Data, model)
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
% Training of a task-parameterized high dimensional GMM with an expectation-maximization (EM) algorithm.
%
% Writing code takes time. Polishing it and making it available to others takes longer! 
% If some parts of the code were useful for your research of for a better understanding 
% of the algorithms, please reward the authors by citing the related publications, 
% and consider making your own research available in this way.
%
% @article{Calinon15,
%   author="Calinon, S.",
%   title="A Tutorial on Task-Parameterized Movement Learning and Retrieval",
%   journal="Intelligent Service Robotics",
%   year="2015"
% }
%
% Copyright (c) 2015 Idiap Research Institute, http://idiap.ch/
% Written by Sylvain Calinon, http://calinon.ch/
% 
% This file is part of PbDlib, http://www.idiap.ch/software/pbdlib/
% 
% PbDlib is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License version 3 as
% published by the Free Software Foundation.
% 
% PbDlib is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
% 
% You should have received a copy of the GNU General Public License
% along with PbDlib. If not, see <http://www.gnu.org/licenses/>.

33 34 35 36 37 38 39

%Parameters of the EM algorithm
nbMinSteps = 5; %Minimum number of iterations allowed
nbMaxSteps = 100; %Maximum number of iterations allowed
maxDiffLL = 1E-5; %Likelihood increase threshold to stop the algorithm
nbData = size(Data,3);

40 41
%diagRegularizationFactor = 1E-2; %Optional regularization term
diagRegularizationFactor = 1E-10; %Optional regularization term
42 43 44 45 46 47 48 49 50 51 52 53 54

%EM loop
for nbIter=1:nbMaxSteps
	fprintf('.');
	
	%E-step
	[Lik, GAMMA] = computeGamma(Data, model); %See 'computeGamma' function below
	GAMMA2 = GAMMA ./ repmat(sum(GAMMA,2),1,nbData);
	model.Pix = GAMMA2;
	
	%M-step
	for i=1:model.nbStates
		
55
		%Update Priors
56 57 58 59 60 61
		model.Priors(i) = sum(sum(GAMMA(i,:))) / nbData;
		
		for m=1:model.nbFrames
			%Matricization/flattening of tensor
			DataMat(:,:) = Data(:,m,:);
			
62
			%Update Mu
63 64
			model.Mu(:,m,i) = DataMat * GAMMA2(i,:)';
			
65
			%Compute covariance
66 67 68
			DataTmp = DataMat - repmat(model.Mu(:,m,i),1,nbData);
			S(:,:,m,i) = DataTmp * diag(GAMMA2(i,:)) * DataTmp' + eye(model.nbVar)*diagRegularizationFactor;
			
69
			%HDGMM update
70 71 72 73 74 75
			[V,D] = eig(S(:,:,m,i)); 
			[~,id] = sort(diag(D),'descend');
			d = diag(D);
			model.D(:,:,m,i) = diag([d(id(1:model.nbFA)); repmat(mean(d(id(model.nbFA+1:end))), model.nbVar-model.nbFA, 1)]);
			model.V(:,:,m,i) = V(:,id); 
	
76
			%Reconstruct Sigma
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
			model.Sigma(:,:,m,i) = model.V(:,:,m,i) * model.D(:,:,m,i) * model.V(:,:,m,i)' + eye(model.nbVar) * diagRegularizationFactor;
		end
	end
	
	%Compute average log-likelihood
	LL(nbIter) = sum(log(sum(Lik,1))) / size(Lik,2);
	%Stop the algorithm if EM converged (small change of LL)
	if nbIter>nbMinSteps
		if LL(nbIter)-LL(nbIter-1)<maxDiffLL || nbIter==nbMaxSteps-1
			disp(['EM converged after ' num2str(nbIter) ' iterations.']);
			return;
		end
	end
end
disp(['The maximum number of ' num2str(nbMaxSteps) ' EM iterations has been reached.']);
end

94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [Lik, GAMMA, GAMMA0] = computeGamma(Data, model)
nbData = size(Data, 3);
Lik = ones(model.nbStates, nbData);
GAMMA0 = zeros(model.nbStates, model.nbFrames, nbData);
for i=1:model.nbStates
	for m=1:model.nbFrames
		DataMat(:,:) = Data(:,m,:); %Matricization/flattening of tensor
		GAMMA0(i,m,:) = gaussPDF(DataMat, model.Mu(:,m,i), model.Sigma(:,:,m,i));
		Lik(i,:) = Lik(i,:) .* squeeze(GAMMA0(i,m,:))';
	end
	Lik(i,:) = Lik(i,:) * model.Priors(i);
end
GAMMA = Lik ./ repmat(sum(Lik,1)+realmin, size(Lik,1), 1);
end