demo_TPMPPCA01.m 4.51 KB
Newer Older
1
function demo_TPMPPCA01
2
% Task-parameterized mixture of probabilistic principal component analyzers (TP-MPPCA). 
Sylvain Calinon's avatar
Sylvain Calinon committed
3
%
4 5 6 7
% Writing code takes time. Polishing it and making it available to others takes longer! 
% If some parts of the code were useful for your research of for a better understanding 
% of the algorithms, please reward the authors by citing the related publications, 
% and consider making your own research available in this way.
Sylvain Calinon's avatar
Sylvain Calinon committed
8
%
9
% @article{Calinon16JIST,
Sylvain Calinon's avatar
Sylvain Calinon committed
10
%   author="Calinon, S.",
11 12
%   title="A Tutorial on Task-Parameterized Movement Learning and Retrieval",
%   journal="Intelligent Service Robotics",
13 14 15 16 17 18
%		publisher="Springer Berlin Heidelberg",
%		doi="10.1007/s11370-015-0187-9",
%		year="2016",
%		volume="9",
%		number="1",
%		pages="1--29"
Sylvain Calinon's avatar
Sylvain Calinon committed
19
% }
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
% 
% Copyright (c) 2015 Idiap Research Institute, http://idiap.ch/
% Written by Sylvain Calinon, http://calinon.ch/
% 
% This file is part of PbDlib, http://www.idiap.ch/software/pbdlib/
% 
% PbDlib is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License version 3 as
% published by the Free Software Foundation.
% 
% PbDlib is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
% 
% You should have received a copy of the GNU General Public License
% along with PbDlib. If not, see <http://www.gnu.org/licenses/>.
37 38 39

addpath('./m_fcts/');

Sylvain Calinon's avatar
Sylvain Calinon committed
40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
%% Parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
model.nbStates = 3; %Number of Gaussians in the GMM
model.nbFrames = 2; %Number of candidate frames of reference
model.nbVar = 2; %Dimension of the datapoints in the dataset (here: x1,x2)
model.nbFA = 1; %Dimension of the subspace (number of principal components)


%% Load 3rd order tensor data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('Load 3rd order tensor data...');
% The MAT file contains a structure 's' with the multiple demonstrations. 's(n).Data' is a matrix data for
% sample n (with 's(n).nbData' datapoints). 's(n).p(m).b' and 's(n).p(m).A' contain the position and
% orientation of the m-th candidate coordinate system for this demonstration. 'Data' contains the observations
% in the different frames. It is a 3rd order tensor of dimension D x P x N, with D=2 the dimension of a
Sylvain Calinon's avatar
Sylvain Calinon committed
56 57
% datapoint, P=2 the number of candidate frames, and N=TM the number of datapoints in a trajectory (T=200)
% multiplied by the number of demonstrations (M=5).
58 59 60 61 62 63 64 65 66 67 68
load('data/Data01.mat');


%% TP-MPPCA learning
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf('Parameters estimation of TP-MPPCA with EM:');
model = init_tensorGMM_kmeans(Data, model); 
model = EM_tensorMPPCA(Data, model);

%Reconstruct GMM for each demonstration
for n=1:nbSamples
Sylvain Calinon's avatar
Sylvain Calinon committed
69
	[s(n).Mu, s(n).Sigma] = productTPGMM0(model, s(n).p); %See Eq. (6)
70 71
end

Sylvain Calinon's avatar
Sylvain Calinon committed
72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
%% Plots
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure('position',[20,50,1300,500]);
xx = round(linspace(1,64,nbSamples));
clrmap = colormap('jet');
clrmap = min(clrmap(xx,:),.95);
limAxes = [-1.2 0.8 -1.1 0.9];
colPegs = [[.9,.5,.9];[.5,.9,.5]];

%DEMOS
subplot(1,model.nbFrames+1,1); hold on; box on; title('Demonstrations');
for n=1:nbSamples
	%Plot frames
	for m=1:model.nbFrames
		plot([s(n).p(m).b(1) s(n).p(m).b(1)+s(n).p(m).A(1,2)], [s(n).p(m).b(2) s(n).p(m).b(2)+s(n).p(m).A(2,2)], '-','linewidth',6,'color',colPegs(m,:));
		plot(s(n).p(m).b(1), s(n).p(m).b(2),'.','markersize',30,'color',colPegs(m,:)-[.05,.05,.05]);
	end
	%Plot trajectories
	plot(s(n).Data(2,1), s(n).Data(3,1),'.','markersize',15,'color',clrmap(n,:));
	plot(s(n).Data(2,:), s(n).Data(3,:),'-','linewidth',1.5,'color',clrmap(n,:));
	%Plot Gaussians
	plotGMM(s(n).Mu, s(n).Sigma, [.5 .5 .5],.8);
end
axis(limAxes); axis square; set(gca,'xtick',[],'ytick',[]);

%FRAMES
for m=1:model.nbFrames
	subplot(1,model.nbFrames+1,1+m); hold on; grid on; box on; title(['Frame ' num2str(m)]);
	for n=1:nbSamples
		plot(squeeze(Data(1,m,(n-1)*s(1).nbData+1)), ...
			squeeze(Data(2,m,(n-1)*s(1).nbData+1)), '.','markersize',15,'color',clrmap(n,:));
		plot(squeeze(Data(1,m,(n-1)*s(1).nbData+1:n*s(1).nbData)), ...
			squeeze(Data(2,m,(n-1)*s(1).nbData+1:n*s(1).nbData)), '-','linewidth',1.5,'color',clrmap(n,:));
	end
	plotGMM(squeeze(model.Mu(:,m,:)), squeeze(model.Sigma(:,:,m,:)), [.5 .5 .5],.8);
	axis square; set(gca,'xtick',[0],'ytick',[0]);
end

%print('-dpng','graphs/demo_TPMPPCA01.png');
%pause;
%close all;