benchmark_DS_GP_raw01.m 7.43 KB
Newer Older
1
function benchmark_DS_GP_raw01
Sylvain Calinon's avatar
Sylvain Calinon committed
2
% Benchmark of task-parameterized model based on Gaussian process regression, 
3
% with raw trajectory, and spring-damper system used for reproduction.
Sylvain Calinon's avatar
Sylvain Calinon committed
4
%
Sylvain CALINON's avatar
Sylvain CALINON committed
5
% If this code is useful for your research, please cite the related publication:
6
% @article{Calinon16JIST,
Sylvain Calinon's avatar
Sylvain Calinon committed
7
%   author="Calinon, S.",
8 9
%   title="A Tutorial on Task-Parameterized Movement Learning and Retrieval",
%   journal="Intelligent Service Robotics",
10 11 12 13 14 15
%		publisher="Springer Berlin Heidelberg",
%		doi="10.1007/s11370-015-0187-9",
%		year="2016",
%		volume="9",
%		number="1",
%		pages="1--29"
Sylvain Calinon's avatar
Sylvain Calinon committed
16
% }
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
% 
% Copyright (c) 2015 Idiap Research Institute, http://idiap.ch/
% Written by Sylvain Calinon, http://calinon.ch/
% 
% This file is part of PbDlib, http://www.idiap.ch/software/pbdlib/
% 
% PbDlib is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License version 3 as
% published by the Free Software Foundation.
% 
% PbDlib is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
% 
% You should have received a copy of the GNU General Public License
% along with PbDlib. If not, see <http://www.gnu.org/licenses/>.
34

Sylvain CALINON's avatar
Sylvain CALINON committed
35
addpath('./../m_fcts/');
36

Sylvain Calinon's avatar
Sylvain Calinon committed
37

38 39 40 41 42 43 44 45 46 47
%% Parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
model.nbFrames = 2; %Number of candidate frames of reference
model.nbVar = 2; %Dimension of the datapoints in the dataset (here: x1,x2)
model.dt = 0.01; %Time step
model.kP = 100; %Stiffness gain
model.kV = (2*model.kP)^.5; %Damping gain (with ideal underdamped damping ratio)
nbRepros = 4; %Number of reproductions with new situations randomly generated
L = [eye(model.nbVar)*model.kP, eye(model.nbVar)*model.kV];

Sylvain Calinon's avatar
Sylvain Calinon committed
48

49 50 51 52 53 54 55
%% Load 3rd order tensor data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('Load 3rd order tensor data...');
% The MAT file contains a structure 's' with the multiple demonstrations. 's(n).Data' is a matrix data for
% sample n (with 's(n).nbData' datapoints). 's(n).p(m).b' and 's(n).p(m).A' contain the position and
% orientation of the m-th candidate coordinate system for this demonstration. 'Data' contains the observations
% in the different frames. It is a 3rd order tensor of dimension D x P x N, with D=3 the dimension of a
Sylvain Calinon's avatar
Sylvain Calinon committed
56 57
% datapoint, P=2 the number of candidate frames, and N=TM the number of datapoints in a trajectory (T=200)
% multiplied by the number of demonstrations (M=5).
58 59 60 61 62 63 64 65 66 67 68 69
load('data/DataLQR01.mat');


%% Transformation of 'Data' to learn the path of the spring-damper system
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nbD = s(1).nbData;
%Create transformation matrix to compute [X; DX; DDX]
D = (diag(ones(1,nbD-1),-1)-eye(nbD)) / model.dt;
D(end,end) = 0;
%Create transformation matrix to compute XHAT = X + DX*kV/kP + DDX/kP
K1d = [1, model.kV/model.kP, 1/model.kP];
K = kron(K1d,eye(model.nbVar));
Sylvain Calinon's avatar
Sylvain Calinon committed
70
%Compute derivatives
71 72 73 74 75 76 77 78
%Data = zeros(model.nbVar, model.nbFrames, nbD*nbSamples);
Data = s(1).Data0(1,:);
for n=1:nbSamples
	DataTmp = s(n).Data0(2:end,:);
	s(n).Data = K * [DataTmp; DataTmp*D; DataTmp*D*D];
	Data = [Data; s(n).Data]; %Data is a matrix of size M*D x T (stacking the different trajectory samples)
end

Sylvain Calinon's avatar
Sylvain Calinon committed
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
%% GPR with raw trajectory encoding
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf('Parameters estimation of GPR with raw trajectory encoding:');
for n=1:nbSamples
	%Set query point vector (position and orientation of the two objects)
	s(n).DataIn = [s(n).p(1).b(2:3); s(n).p(1).A(2:3,3); s(n).p(2).b(2:3); s(n).p(2).A(2:3,3)];
	model.DataIn(:,n) = s(n).DataIn;
	%Set model output vector (raw trajectory data)
	model.DataOut(:,n) = reshape(s(n).Data, model.nbVar*nbD, 1);
end


% %% Reproduction with GPR for the task parameters used to train the model
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% disp('Reproductions with spring-damper system...');
% for n=1:nbSamples
% 	%Direct retrieval of attractor path through GPR
% 	vOut = GPR(model.DataIn, model.DataOut, s(n).DataIn);
% 	currTar = reshape(vOut, model.nbVar, nbD);
% 	
% 	%Motion retrieval with spring-damper system
% 	x = s(n).p(1).b(2:3);
% 	dx = zeros(model.nbVar,1);
% 	for t=1:s(n).nbData
% 		%Compute acceleration, velocity and position
Sylvain Calinon's avatar
Sylvain Calinon committed
105
% 		ddx =  -L * [x-currTar(:,t); dx]; 
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
% 		dx = dx + ddx * model.dt;
% 		x = x + dx * model.dt;
% 		r(n).Data(:,t) = x;
% 	end
% end


%% Reproduction with GPR for new task parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('New reproductions with spring-damper system...');
load('data/taskParams.mat'); %Load new task parameters (new situation)
for n=1:nbRepros
	rnew(n).p = taskParams(n).p;
	%Query point vector (position and orientation of the two objects)
	rnew(n).DataIn = [rnew(n).p(1).b(2:3); rnew(n).p(1).A(2:3,3); rnew(n).p(2).b(2:3); rnew(n).p(2).A(2:3,3)];
	
	%Direct retrieval of attractor path through GPR
	[vOut, vOutSigma] = GPR(model.DataIn, model.DataOut, rnew(n).DataIn, [5E-1, 1E-1, 1E-2]);
	rnew(n).currTar  = reshape(vOut, model.nbVar, nbD);
	for t=1:nbD
		id = (t-1)*model.nbVar+1:t*model.nbVar;
		%id = t:t+nbD:nbD*model.nbVar;
		rnew(n).currSigma(:,:,t) = vOutSigma(id,id) / 20;
	end

	%Motion retrieval with spring-damper system
	x = rnew(n).p(1).b(2:3);
	dx = zeros(model.nbVar,1);
	for t=1:nbD
		%Compute acceleration, velocity and position
Sylvain Calinon's avatar
Sylvain Calinon committed
136
		ddx =  -L * [x-rnew(n).currTar(:,t); dx]; 
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
		dx = dx + ddx * model.dt;
		x = x + dx * model.dt;
		rnew(n).Data(:,t) = x;
	end
end


%% Plots
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure('PaperPosition',[0 0 4 3],'position',[20,50,600,450]);
axes('Position',[0 0 1 1]); axis off; hold on;
set(0,'DefaultAxesLooseInset',[0,0,0,0]);
limAxes = [-1.5 2.5 -1.6 1.4]*.8;
myclr = [0.2863 0.0392 0.2392; 0.9137 0.4980 0.0078; 0.7412 0.0824 0.3137];

%Plot demonstrations
plotPegs(s(1).p(1), myclr(1,:), .1);
for n=1:nbSamples
	plotPegs(s(n).p(2), myclr(2,:), .1);
	patch([s(n).Data0(2,1:end) s(n).Data0(2,end:-1:1)], [s(n).Data0(3,1:end) s(n).Data0(3,end:-1:1)],...
		[1 1 1],'linewidth',1.5,'edgecolor',[0 0 0],'facealpha',0,'edgealpha',0.04);
end
axis equal; axis(limAxes);
Sylvain Calinon's avatar
Sylvain Calinon committed
160
%print('-dpng','-r600','graphs/benchmark_DS_GP_raw01.png');
161 162

%Plot reproductions in new situations
Sylvain Calinon's avatar
Sylvain Calinon committed
163
disp('[Press enter to see next reproduction attempt]');
164 165 166 167 168 169 170 171 172
h=[];
for n=1:nbRepros
	delete(h);
	h = plotPegs(rnew(n).p);
	h = [h plotGMM(rnew(n).currTar, rnew(n).currSigma,  [0 .8 0], .2)];
	h = [h patch([rnew(n).Data(1,:) rnew(n).Data(1,fliplr(1:nbD))], [rnew(n).Data(2,:) rnew(n).Data(2,fliplr(1:nbD))],...
		[1 1 1],'linewidth',1.5,'edgecolor',[0 0 0],'facealpha',0,'edgealpha',0.4)];
	h = [h plot(rnew(n).Data(1,1), rnew(n).Data(2,1),'.','markersize',12,'color',[0 0 0])];
	axis equal; axis(limAxes);
Sylvain Calinon's avatar
Sylvain Calinon committed
173 174
	%print('-dpng','-r600',['graphs/benchmark_DS_GP_raw' num2str(n+1,'%.2d') '.png']);
	pause;
175 176 177 178 179 180 181 182 183
end

pause;
close all;
end

%Function to plot pegs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = plotPegs(p, colPegs, fa)
Sylvain CALINON's avatar
Sylvain CALINON committed
184 185 186 187 188 189 190 191 192 193
	if ~exist('colPegs')
		colPegs = [0.2863 0.0392 0.2392; 0.9137 0.4980 0.0078];
		fa = 0.4;
	end
	pegMesh = [-4 -3.5; -4 10; -1.5 10; -1.5 -1; 1.5 -1; 1.5 10; 4 10; 4 -3.5; -4 -3.5]' *1E-1;
	for m=1:length(p)
		dispMesh = p(m).A(2:3,2:3) * pegMesh + repmat(p(m).b(2:3),1,size(pegMesh,2));
		h(m) = patch(dispMesh(1,:),dispMesh(2,:),colPegs(m,:),'linewidth',1,'edgecolor','none','facealpha',fa);
	end
end