demo_HDDC01.m 3.36 KB
Newer Older
1
function demo_HDDC01
2
% High Dimensional Data Clustering (HDDC, or HD-GMM) encoding.
Sylvain Calinon's avatar
Sylvain Calinon committed
3
% 
4
5
6
7
% Writing code takes time. Polishing it and making it available to others takes longer! 
% If some parts of the code were useful for your research of for a better understanding 
% of the algorithms, please reward the authors by citing the related publications, 
% and consider making your own research available in this way.
Sylvain Calinon's avatar
Sylvain Calinon committed
8
9
10
%
% @article{Calinon15,
%   author="Calinon, S.",
11
12
13
14
15
16
17
18
19
20
21
22
23
%   title="A Tutorial on Task-Parameterized Movement Learning and Retrieval",
%   journal="Intelligent Service Robotics",
%   year="2015"
% }
% 
% @article{Bouveyron07,
% 	author = "Bouveyron, C. and Girard, S. and Schmid, C.",
% 	title = "High-dimensional data clustering",
% 	journal = "Computational Statistics and Data Analysis",
% 	year = "2007",
% 	volume = "52",
% 	number = "1",
% 	pages = "502--519"
Sylvain Calinon's avatar
Sylvain Calinon committed
24
% }
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
% 
% Copyright (c) 2015 Idiap Research Institute, http://idiap.ch/
% Written by Sylvain Calinon, http://calinon.ch/
% 
% This file is part of PbDlib, http://www.idiap.ch/software/pbdlib/
% 
% PbDlib is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License version 3 as
% published by the Free Software Foundation.
% 
% PbDlib is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
% 
% You should have received a copy of the GNU General Public License
% along with PbDlib. If not, see <http://www.gnu.org/licenses/>.
42
43
44

addpath('./m_fcts/');

Sylvain Calinon's avatar
Sylvain Calinon committed
45

46
47
48
49
50
51
52
53
54
%% Parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
model.nbStates = 4; %Number of states in the GMM
model.nbVar = 4; %Number of variables [x1,x2,x3,x4]
model.nbFA = 1; %Dimension of the subspace
nbData = 200; %Length of each trajectory
nbSamples = 5; %Number of demonstrations


Sylvain Calinon's avatar
Sylvain Calinon committed
55
%% Load AMARSI handwriting data
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
demos=[];
load('data/AMARSI/GShape.mat'); %Load x1,x2 variables
for n=1:nbSamples
	s(n).Data = spline(1:size(demos{n}.pos,2), demos{n}.pos, linspace(1,size(demos{n}.pos,2),nbData)); %Resampling
end
demos=[];
load('data/AMARSI/CShape.mat'); %Load x3,x4 variables
Data=[];
for n=1:nbSamples
	s(n).Data = [s(n).Data; spline(1:size(demos{n}.pos,2), demos{n}.pos, linspace(1,size(demos{n}.pos,2),nbData))]; %Resampling
	Data = [Data s(n).Data]; 
end


%% Parameters estimation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
model = init_GMM_kmeans(Data, model);
model0 = EM_GMM(Data, model); %for comparison
Sylvain Calinon's avatar
Sylvain Calinon committed
75
76
model = EM_HDGMM(Data, model); 

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

%% Plots
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure('position',[10,10,1000,500]); 
for i=1:2
	subplot(1,2,i); hold on; box on; 
	plotGMM(model0.Mu((i-1)*2+1:i*2,:), model0.Sigma((i-1)*2+1:i*2,(i-1)*2+1:i*2,:), [.8 .8 .8]);
	plotGMM(model.Mu((i-1)*2+1:i*2,:), model.Sigma((i-1)*2+1:i*2,(i-1)*2+1:i*2,:), [.8 0 0]);
	plot(Data((i-1)*2+1,:),Data(i*2,:),'.','markersize',8,'color',[.7 .7 .7]);
	axis equal; set(gca,'Xtick',[]); set(gca,'Ytick',[]);
	xlabel(['x_' num2str((i-1)*2+1)]); ylabel(['x_' num2str(i*2)]);
end

%print('-dpng','graphs/demo_HDDC01.png');
%pause;
%close all;