demo_DSGMR01.m 7.88 KB
Newer Older
1
function demo_DSGMR01
Sylvain Calinon's avatar
Sylvain Calinon committed
2 3 4 5
% Demonstration a task-parameterized probabilistic model encoding movements in the form of virtual spring-damper 
% systems acting in multiple frames of reference. Each candidate coordinate system observes a set of 
% demonstrations from its own perspective, by extracting an attractor path whose variations depend on the 
% relevance of the frame through the task. This information is exploited to generate a new attractor path 
6
% corresponding to new situations (new positions and orientation of the frames).
Sylvain Calinon's avatar
Sylvain Calinon committed
7
%
8
% This demo presents the results for a dynamical system with constant gains.
Sylvain Calinon's avatar
Sylvain Calinon committed
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
%  
% Author:	Sylvain Calinon, 2014
%         http://programming-by-demonstration.org/SylvainCalinon
%
% This source code is given for free! In exchange, I would be grateful if you cite  
% the following reference in any academic publication that uses this code or part of it: 
%
% @inproceedings{Calinon14ICRA,
%   author="Calinon, S. and Bruno, D. and Caldwell, D. G.",
%   title="A task-parameterized probabilistic model with minimal intervention control",
%   booktitle="Proc. {IEEE} Intl Conf. on Robotics and Automation ({ICRA})",
%   year="2014",
%   month="May-June",
%   address="Hong Kong, China",
%   pages="3339--3344"
% }

%% Parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
model.nbStates = 3; %Number of Gaussians in the GMM
model.nbFrames = 2; %Number of candidate frames of reference
model.nbVar = 3; %Dimension of the datapoints in the dataset (here: t,x1,x2)
model.dt = 0.01; %Time step 
32 33
model.kP = 100; %Stiffness gain (required only if LQR is not used for reproduction)
model.kV = (2*model.kP)^.5; %Damping gain (required only if LQR is not used for reproduction)
Sylvain Calinon's avatar
Sylvain Calinon committed
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
nbRepros = 8; %Number of reproductions with new situations randomly generated
rFactor = 1E-1; %Weighting term for the minimization of control commands in LQR


%% Load 3rd order tensor data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('Load 3rd order tensor data...');
% The MAT file contains a structure 's' with the multiple demonstrations. 's(n).Data' is a matrix data for 
% sample n (with 's(n).nbData' datapoints). 's(n).p(m).b' and 's(n).p(m).A' contain the position and 
% orientation of the m-th candidate coordinate system for this demonstration. 'Data' contains the observations 
% in the different frames. It is a 3rd order tensor of dimension D x P x N, with D=3 the dimension of a 
% datapoint, P=2 the number of candidate frames, and N=200x4 the number of datapoints in a trajectory (200)
% multiplied by the number of demonstrations (5).
load('data/DataLQR01.mat');


50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
%% Transformation of 'Data' to learn the path of the spring-damper system
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nbD = s(1).nbData;
nbVarOut = model.nbVar - 1;
%Create transformation matrix to compute [X; DX; DDX]
D = (diag(ones(1,nbD-1),-1)-eye(nbD)) / model.dt;
D(end,end) = 0;
%Create transformation matrix to compute XHAT = X + DX*kV/kP + DDX/kP
K1d = [1, model.kV/model.kP, 1/model.kP];
K = kron(K1d,eye(nbVarOut));
%Create 3rd order tensor data with XHAT instead of X
for n=1:nbSamples
	DataTmp = s(n).Data0(2:end,:);
	DataTmp = [s(n).Data0(1,:); K * [DataTmp; DataTmp*D; DataTmp*D*D]];
	for m=1:model.nbFrames
		Data(:,m,(n-1)*nbD+1:n*nbD) = s(n).p(m).A \ (DataTmp - repmat(s(n).p(m).b, 1, nbD)); 
	end
end
Sylvain Calinon's avatar
Sylvain Calinon committed
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83


%% Tensor GMM learning
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf('Parameters estimation of tensor GMM with EM:');
model = init_tensorGMM_timeBased(Data, model); %Initialization 
model = EM_tensorGMM(Data, model);


%% Reproduction with LQR for the task parameters used to train the model
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('Reproductions with LQR...');
DataIn = [1:s(1).nbData] * model.dt;
for n=1:nbSamples
  %Retrieval of attractor path through task-parameterized GMR
  a(n) = estimateAttractorPath(DataIn, model, s(n));
84
  r(n) = reproduction_DS(DataIn, model, a(n), a(n).currTar(:,1)); 
Sylvain Calinon's avatar
Sylvain Calinon committed
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
end


%% Reproduction with LQR for new task parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('New reproductions with LQR...');
for n=1:nbRepros 
  for m=1:model.nbFrames
    %Random generation of new task parameters 
    id=ceil(rand(2,1)*nbSamples);
    w=rand(2); w=w/sum(w);
    rTmp.p(m).b = s(id(1)).p(m).b * w(1) + s(id(2)).p(m).b * w(2);
    rTmp.p(m).A = s(id(1)).p(m).A * w(1) + s(id(2)).p(m).A * w(2);
  end
  %Retrieval of attractor path through task-parameterized GMR
  anew(n) = estimateAttractorPath(DataIn, model, rTmp);
101
  rnew(n) = reproduction_DS(DataIn, model, anew(n), anew(n).currTar(:,1)); 
Sylvain Calinon's avatar
Sylvain Calinon committed
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
end


%% Plots
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure('position',[20,50,1300,500]);
xx = round(linspace(1,64,nbSamples));
clrmap = colormap('jet');
clrmap = min(clrmap(xx,:),.95);
limAxes = [-1.2 0.8 -1.1 0.9];
colPegs = [[.9,.5,.9];[.5,.9,.5]];

%DEMOS
subplot(1,3,1); hold on; box on; title('Demonstrations');
for n=1:nbSamples
  %Plot frames
  for m=1:model.nbFrames
    plot([s(n).p(m).b(2) s(n).p(m).b(2)+s(n).p(m).A(2,3)], [s(n).p(m).b(3) s(n).p(m).b(3)+s(n).p(m).A(3,3)], '-','linewidth',6,'color',colPegs(m,:));
    plot(s(n).p(m).b(2), s(n).p(m).b(3),'.','markersize',30,'color',colPegs(m,:)-[.05,.05,.05]);
  end
  %Plot trajectories
  plot(s(n).Data0(2,1), s(n).Data0(3,1),'.','markersize',12,'color',clrmap(n,:));
  plot(s(n).Data0(2,:), s(n).Data0(3,:),'-','linewidth',1.5,'color',clrmap(n,:));
end
axis(limAxes); axis square; set(gca,'xtick',[],'ytick',[]);

%REPROS
129
subplot(1,3,2); hold on; box on; title('Reproductions with DS-GMR');
Sylvain Calinon's avatar
Sylvain Calinon committed
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
for n=1:nbSamples
  %Plot frames
  for m=1:model.nbFrames
    plot([s(n).p(m).b(2) s(n).p(m).b(2)+s(n).p(m).A(2,3)], [s(n).p(m).b(3) s(n).p(m).b(3)+s(n).p(m).A(3,3)], '-','linewidth',6,'color',colPegs(m,:));
    plot(s(n).p(m).b(2), s(n).p(m).b(3),'.','markersize',30,'color',colPegs(m,:)-[.05,.05,.05]);
  end
  %Plot Gaussians
  plotGMM(r(n).Mu(2:3,:,1), r(n).Sigma(2:3,2:3,:,1), [.7 .7 .7]);
end
for n=1:nbSamples
  %Plot trajectories
  plot(r(n).Data(2,1), r(n).Data(3,1),'.','markersize',12,'color',clrmap(n,:));
  plot(r(n).Data(2,:), r(n).Data(3,:),'-','linewidth',1.5,'color',clrmap(n,:));
end
axis(limAxes); axis square; set(gca,'xtick',[],'ytick',[]);

%NEW REPROS
147
subplot(1,3,3); hold on; box on; title('New reproductions with DS-GMR');
Sylvain Calinon's avatar
Sylvain Calinon committed
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
for n=1:nbRepros
  %Plot frames
  for m=1:model.nbFrames
    plot([rnew(n).p(m).b(2) rnew(n).p(m).b(2)+rnew(n).p(m).A(2,3)], [rnew(n).p(m).b(3) rnew(n).p(m).b(3)+rnew(n).p(m).A(3,3)], '-','linewidth',6,'color',colPegs(m,:));
    plot(rnew(n).p(m).b(2), rnew(n).p(m).b(3), '.','markersize',30,'color',colPegs(m,:)-[.05,.05,.05]);
  end
  %Plot Gaussians
  plotGMM(rnew(n).Mu(2:3,:,1), rnew(n).Sigma(2:3,2:3,:,1), [.7 .7 .7]);
end
for n=1:nbRepros
  %Plot trajectories
  plot(rnew(n).Data(2,1), rnew(n).Data(3,1),'.','markersize',12,'color',[.2 .2 .2]);
  plot(rnew(n).Data(2,:), rnew(n).Data(3,:),'-','linewidth',1.5,'color',[.2 .2 .2]);
end
axis(limAxes); axis square; set(gca,'xtick',[],'ytick',[]);

164
%print('-dpng','outTest1.png');
Sylvain Calinon's avatar
Sylvain Calinon committed
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

%Plot additional information 
figure; 
%Plot norm of control commands
subplot(1,2,1); hold on;
for n=1:nbRepros
  plot(DataIn, rnew(n).ddxNorm, 'k-', 'linewidth', 2);
end
xlabel('t'); ylabel('|ddx|');
%Plot strength of the stiffness term
subplot(1,2,2); hold on;
for n=1:nbRepros
  plot(DataIn, rnew(n).kpDet, 'k-', 'linewidth', 2);
end
xlabel('t'); ylabel('|Kp|');

%Plot accelerations due to feedback and feedforward terms
figure; hold on;
n=1; k=1;
plot(r(n).FB(k,:),'r-','linewidth',2);
plot(r(n).FF(k,:),'b-','linewidth',2);
legend('ddx feedback','ddx feedforward');
xlabel('t'); ylabel(['ddx_' num2str(k)]);

189
%print('-dpng','outTest2.png');
Sylvain Calinon's avatar
Sylvain Calinon committed
190 191 192 193
%pause;
%close all;