# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> # # SPDX-License-Identifier: GPL-3.0-or-later import numpy as np from mednet.classify.engine.saliency.interpretability import ( _compute_avg_saliency_focus, _compute_binary_mask, _compute_proportional_energy, _process_sample, ) from torchvision import tv_tensors def test_compute_avg_saliency_focus(): grayscale_cams = np.ones((200, 200)) grayscale_cams2 = np.full((512, 512), 0.5) grayscale_cams3 = np.zeros((256, 256)) grayscale_cams3[50:75, 50:100] = 1 bbox_data = [50, 50, 100, 100] gt_boxes = tv_tensors.BoundingBoxes( data=bbox_data, format="XYXY", canvas_size=grayscale_cams.shape ) binary_mask = _compute_binary_mask(gt_boxes, grayscale_cams) gt_boxes2 = tv_tensors.BoundingBoxes( data=bbox_data, format="XYXY", canvas_size=grayscale_cams.shape ) binary_mask2 = _compute_binary_mask(gt_boxes2, grayscale_cams2) gt_boxes3 = tv_tensors.BoundingBoxes( data=bbox_data, format="XYXY", canvas_size=grayscale_cams.shape ) binary_mask3 = _compute_binary_mask(gt_boxes3, grayscale_cams3) avg_saliency_focus = _compute_avg_saliency_focus( grayscale_cams, binary_mask, ) avg_saliency_focus2 = _compute_avg_saliency_focus( grayscale_cams2, binary_mask2, ) avg_saliency_focus3 = _compute_avg_saliency_focus( grayscale_cams3, binary_mask3, ) assert avg_saliency_focus == 1 assert avg_saliency_focus2 == 0.5 assert avg_saliency_focus3 == 0.5 def test_compute_avg_saliency_focus_no_activations(): grayscale_cams = np.zeros((200, 200)) bbox_data = [50, 50, 100, 100] gt_boxes = tv_tensors.BoundingBoxes( data=bbox_data, format="XYXY", canvas_size=grayscale_cams.shape ) binary_mask = _compute_binary_mask(gt_boxes, grayscale_cams) avg_saliency_focus = _compute_avg_saliency_focus( grayscale_cams, binary_mask, ) assert avg_saliency_focus == 0 def test_compute_avg_saliency_focus_zero_gt_area(): grayscale_cams = np.ones((200, 200)) bbox_data = [50, 50, 50, 50] gt_boxes = tv_tensors.BoundingBoxes( data=bbox_data, format="XYXY", canvas_size=grayscale_cams.shape ) binary_mask = _compute_binary_mask(gt_boxes, grayscale_cams) avg_saliency_focus = _compute_avg_saliency_focus( grayscale_cams, binary_mask, ) assert avg_saliency_focus == 0 def test_compute_proportional_energy(): grayscale_cams = np.ones((200, 200)) grayscale_cams2 = np.full((512, 512), 0.5) grayscale_cams3 = np.zeros((512, 512)) grayscale_cams3[100:200, 100:200] = 1 bbox_data = [50, 50, 150, 150] gt_boxes = tv_tensors.BoundingBoxes( data=bbox_data, format="XYXY", canvas_size=grayscale_cams.shape ) binary_mask = _compute_binary_mask(gt_boxes, grayscale_cams) gt_boxes2 = tv_tensors.BoundingBoxes( data=bbox_data, format="XYXY", canvas_size=grayscale_cams2.shape ) binary_mask2 = _compute_binary_mask(gt_boxes2, grayscale_cams2) gt_boxes3 = tv_tensors.BoundingBoxes( data=bbox_data, format="XYXY", canvas_size=grayscale_cams3.shape ) binary_mask3 = _compute_binary_mask(gt_boxes3, grayscale_cams3) proportional_energy = _compute_proportional_energy( grayscale_cams, binary_mask, ) proportional_energy2 = _compute_proportional_energy( grayscale_cams2, binary_mask2, ) proportional_energy3 = _compute_proportional_energy( grayscale_cams3, binary_mask3, ) assert proportional_energy == 0.25 assert proportional_energy2 == 0.03814697265625 assert proportional_energy3 == 0.25 def test_compute_proportional_energy_no_activations(): grayscale_cams = np.zeros((200, 200)) bbox_data = [50, 50, 150, 150] gt_boxes = tv_tensors.BoundingBoxes( data=bbox_data, format="XYXY", canvas_size=grayscale_cams.shape ) binary_mask = _compute_binary_mask(gt_boxes, grayscale_cams) proportional_energy = _compute_proportional_energy( grayscale_cams, binary_mask, ) assert proportional_energy == 0 def test_compute_proportional_energy_no_gt_box(): grayscale_cams = np.ones((200, 200)) bbox_data = [0, 0, 0, 0] gt_boxes = tv_tensors.BoundingBoxes( data=bbox_data, format="XYXY", canvas_size=grayscale_cams.shape ) binary_mask = _compute_binary_mask(gt_boxes, grayscale_cams) proportional_energy = _compute_proportional_energy( grayscale_cams, binary_mask, ) assert proportional_energy == 0 def test_process_sample(): grayscale_cams = np.ones((200, 200)) bbox_data = [50, 50, 50, 50] gt_boxes = tv_tensors.BoundingBoxes( data=bbox_data, format="XYXY", canvas_size=grayscale_cams.shape ) proportional_energy, avg_saliency_focus = _process_sample( gt_boxes, grayscale_cams, ) assert proportional_energy == 0 assert avg_saliency_focus == 0