# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> # # SPDX-License-Identifier: GPL-3.0-or-later # Adapted from: # https://github.com/pytorch/pytorch/blob/master/torch/hub.py # https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/utils/checkpoint.py import hashlib import os import re import shutil import sys import tempfile from urllib.parse import urlparse from urllib.request import urlopen from tqdm import tqdm modelurls = { "vgg11": "https://download.pytorch.org/models/vgg11-bbd30ac9.pth", "vgg13": "https://download.pytorch.org/models/vgg13-c768596a.pth", "vgg16": "https://download.pytorch.org/models/vgg16-397923af.pth", "vgg19": "https://download.pytorch.org/models/vgg19-dcbb9e9d.pth", "vgg11_bn": "https://download.pytorch.org/models/vgg11_bn-6002323d.pth", "vgg13_bn": "https://download.pytorch.org/models/vgg13_bn-abd245e5.pth", "vgg16_bn": "https://download.pytorch.org/models/vgg16_bn-6c64b313.pth", "vgg19_bn": "https://download.pytorch.org/models/vgg19_bn-c79401a0.pth", "resnet18": "https://download.pytorch.org/models/resnet18-5c106cde.pth", "resnet34": "https://download.pytorch.org/models/resnet34-333f7ec4.pth", "resnet50": "https://download.pytorch.org/models/resnet50-19c8e357.pth", "resnet101": "https://download.pytorch.org/models/resnet101-5d3b4d8f.pth", "resnet152": "https://download.pytorch.org/models/resnet152-b121ed2d.pth", } """URLs of pre-trained models (backbones)""" def download_url_to_file(url, dst, hash_prefix, progress): file_size = None u = urlopen(url) meta = u.info() if hasattr(meta, "getheaders"): content_length = meta.getheaders("Content-Length") else: content_length = meta.get_all("Content-Length") if content_length is not None and len(content_length) > 0: file_size = int(content_length[0]) f = tempfile.NamedTemporaryFile(delete=False) try: if hash_prefix is not None: sha256 = hashlib.sha256() with tqdm(total=file_size, disable=not progress) as pbar: while True: buffer = u.read(8192) if len(buffer) == 0: break f.write(buffer) if hash_prefix is not None: sha256.update(buffer) pbar.update(len(buffer)) f.close() if hash_prefix is not None: digest = sha256.hexdigest() if digest[: len(hash_prefix)] != hash_prefix: raise RuntimeError( 'invalid hash value (expected "{}", got "{}")'.format( hash_prefix, digest ) ) shutil.move(f.name, dst) finally: f.close() if os.path.exists(f.name): os.remove(f.name) HASH_REGEX = re.compile(r"-([a-f0-9]*)\.") def cache_url(url, model_dir=None, progress=True): r"""Loads the Torch serialized object at the given URL. If the object is already present in `model_dir`, it's deserialized and returned. The filename part of the URL should follow the naming convention ``filename-<sha256>.ext`` where ``<sha256>`` is the first eight or more digits of the SHA256 hash of the contents of the file. The hash is used to ensure unique names and to verify the contents of the file. The default value of `model_dir` is ``$TORCH_HOME/models`` where ``$TORCH_HOME`` defaults to ``~/.torch``. The default directory can be overridden with the ``$TORCH_MODEL_ZOO`` environment variable. Args: url (string): URL of the object to download model_dir (string, optional): directory in which to save the object progress (bool, optional): whether or not to display a progress bar to stderr """ if model_dir is None: torch_home = os.path.expanduser(os.getenv("TORCH_HOME", "~/.torch")) model_dir = os.getenv( "TORCH_MODEL_ZOO", os.path.join(torch_home, "models") ) if not os.path.exists(model_dir): os.makedirs(model_dir) parts = urlparse(url) filename = os.path.basename(parts.path) cached_file = os.path.join(model_dir, filename) if not os.path.exists(cached_file): sys.stderr.write(f'Downloading: "{url}" to {cached_file}\n') hash_prefix = HASH_REGEX.search(filename) if hash_prefix is not None: hash_prefix = hash_prefix.group(1) download_url_to_file(url, cached_file, hash_prefix, progress=progress) return cached_file