diff --git a/src/ptbench/configs/datasets/__init__.py b/src/ptbench/configs/datasets/__init__.py
index 1b07483737b2515fbda98ac630f1126d8ffe462a..d5b0352ab4317b08057ee21750ad3bfe95ef54c3 100644
--- a/src/ptbench/configs/datasets/__init__.py
+++ b/src/ptbench/configs/datasets/__init__.py
@@ -49,7 +49,6 @@ def make_subset(samples, transforms=[], prefixes=[], suffixes=[]):
     subset : :py:class:`ptbench.data.utils.SampleListDataset`
         A pre-formatted dataset that can be fed to one of our engines
     """
-
     from ...data.utils import SampleListDataset as wrapper
 
     return wrapper(samples, prefixes + transforms + suffixes)
@@ -184,7 +183,6 @@ def get_samples_weights(dataset):
     samples_weights : :py:class:`torch.Tensor`
         the weights for all the samples in the dataset given as input
     """
-
     samples_weights = []
 
     if isinstance(dataset, torch.utils.data.ConcatDataset):
diff --git a/src/ptbench/data/dataset.py b/src/ptbench/data/dataset.py
index a87aaf0b5901ce2b58793c2df9311cdd341aa428..995f227c2e44fea1bc77898d5e009a505108932e 100644
--- a/src/ptbench/data/dataset.py
+++ b/src/ptbench/data/dataset.py
@@ -102,7 +102,6 @@ class JSONDataset:
         errors : int
             Number of errors found
         """
-
         logger.info("Checking dataset...")
         errors = 0
         for proto in self._protocols:
@@ -146,7 +145,6 @@ class JSONDataset:
             A dictionary mapping subset names to lists of objects (respecting
             the ``key``, ``data`` interface).
         """
-
         fileobj = self._protocols[protocol]
         if isinstance(fileobj, (str, bytes, pathlib.Path)):
             if str(fileobj).endswith(".bz2"):
@@ -246,7 +244,6 @@ class CSVDataset:
         errors : int
             Number of errors found
         """
-
         logger.info("Checking dataset...")
         errors = 0
         for name in self._subsets.keys():
@@ -277,7 +274,6 @@ class CSVDataset:
             A dictionary mapping subset names to lists of objects (respecting
             the ``key``, ``data`` interface).
         """
-
         return {k: self.samples(k) for k in self._subsets.keys()}
 
     def samples(self, subset):
@@ -301,7 +297,6 @@ class CSVDataset:
         subset : list
             A lists of objects (respecting the ``key``, ``data`` interface).
         """
-
         fileobj = self._subsets[subset]
         if isinstance(fileobj, (str, bytes, pathlib.Path)):
             with open(self._subsets[subset], newline="") as f:
diff --git a/src/ptbench/data/loader.py b/src/ptbench/data/loader.py
index 1e0f89235b7a4259f5f934e8755086da0bc88f05..2e03aa353c5f5e95db70b53072f94071b60cf677 100644
--- a/src/ptbench/data/loader.py
+++ b/src/ptbench/data/loader.py
@@ -29,7 +29,6 @@ def load_pil(path):
     image : PIL.Image.Image
         A PIL image
     """
-
     return PIL.Image.open(path)
 
 
@@ -49,7 +48,6 @@ def load_pil_baw(path):
     image : PIL.Image.Image
         A PIL image in grayscale mode
     """
-
     return load_pil(path).convert("L")
 
 
@@ -69,7 +67,6 @@ def load_pil_rgb(path):
     image : PIL.Image.Image
         A PIL image in RGB mode
     """
-
     return load_pil(path).convert("RGB")
 
 
@@ -99,7 +96,6 @@ def make_delayed(sample, loader, key=None):
         In which ``key`` is as provided and ``data`` can be accessed to trigger
         sample loading.
     """
-
     return DelayedSample(
         functools.partial(loader, sample),
         key=key or sample["data"],
diff --git a/src/ptbench/data/transforms.py b/src/ptbench/data/transforms.py
index 91d56111ccb2e121aa3fc6bbd91c29ed7c0255da..19b1cb6b3ab5972e25fb8d29540d8163399a91dd 100644
--- a/src/ptbench/data/transforms.py
+++ b/src/ptbench/data/transforms.py
@@ -26,7 +26,8 @@ class SingleAutoLevel16to8:
 
     This transform assumes that the input image is gray-scaled.
 
-    To auto-level, we calculate the maximum and the minimum of the image, and
+    To auto-level, we calculate the maximum and the minimum of the
+    image, and
     consider such a range should be mapped to the [0,255] range of the
     destination image.
     """
diff --git a/src/ptbench/data/utils.py b/src/ptbench/data/utils.py
index b743753988d80942867b40e4b83f75be506d1924..bc5bdbd4b5fbda35361018e40479199435209fe0 100644
--- a/src/ptbench/data/utils.py
+++ b/src/ptbench/data/utils.py
@@ -59,7 +59,6 @@ class SampleListDataset(torch.utils.data.Dataset):
             An optional list of transforms to set in the copy.  If not
             specified, use ``self.transforms``.
         """
-
         return SampleListDataset(self._samples, transforms or self.transforms)
 
     def random_permute(self, feature):
@@ -113,7 +112,6 @@ class SampleListDataset(torch.utils.data.Dataset):
             The sample data: ``[key, image, label]``
 
         """
-
         if isinstance(key, slice):
             return [self[k] for k in range(*key.indices(len(self)))]
         else:  # we try it as an int
diff --git a/src/ptbench/engine/evaluator.py b/src/ptbench/engine/evaluator.py
index 3c0348c0d8c65f3f209c8db329a46af4a5144a80..5e86ee855aad524ab942b054952afac3000816b7 100644
--- a/src/ptbench/engine/evaluator.py
+++ b/src/ptbench/engine/evaluator.py
@@ -37,7 +37,6 @@ def eer_threshold(neg, pos) -> float:
 
         Threshold
     """
-
     from scipy.interpolate import interp1d
     from scipy.optimize import brentq
 
@@ -52,7 +51,6 @@ def eer_threshold(neg, pos) -> float:
 
 def posneg(pred, gt, threshold):
     """Calculates true and false positives and negatives."""
-
     # threshold
     binary_pred = torch.gt(pred, threshold)
 
@@ -107,7 +105,6 @@ def sample_measures_for_threshold(pred, gt, threshold):
 
     f1_score: float
     """
-
     tp_tensor, fp_tensor, tn_tensor, fn_tensor = posneg(pred, gt, threshold)
 
     # calc measures from scalars
diff --git a/src/ptbench/engine/predictor.py b/src/ptbench/engine/predictor.py
index 7becc6759241e62ddda00d7b458df345538c80c9..27d9d2142f761b401f1709e85132fd01fde50349 100644
--- a/src/ptbench/engine/predictor.py
+++ b/src/ptbench/engine/predictor.py
@@ -72,7 +72,6 @@ def run(model, data_loader, name, device, output_folder, grad_cams=False):
     all_predictions : list
         All the predictions associated with filename and groundtruth
     """
-
     output_folder = os.path.join(output_folder, name)
 
     logger.info(f"Output folder: {output_folder}")
diff --git a/src/ptbench/engine/trainer.py b/src/ptbench/engine/trainer.py
index 2c6be7e146c8a627ec195b507f72e2d7d91d9caf..2e3d91a60387edffea0abdcf85eea54cc97fc32d 100644
--- a/src/ptbench/engine/trainer.py
+++ b/src/ptbench/engine/trainer.py
@@ -44,7 +44,6 @@ def torch_evaluation(model):
     model : :py:class:`torch.nn.Module`
         Network
     """
-
     model.eval()
     yield model
     model.train()
@@ -217,7 +216,6 @@ def train_epoch(loader, model, optimizer, device, criterion, batch_chunk_count):
         A floating-point value corresponding the weighted average of this
         epoch's loss
     """
-
     losses_in_epoch = []
     samples_in_epoch = []
     losses_in_batch = []
@@ -308,7 +306,6 @@ def validate_epoch(loader, model, device, criterion, pbar_desc):
         A floating-point value corresponding the weighted average of this
         epoch's loss
     """
-
     batch_losses = []
     samples_in_batch = []
 
diff --git a/src/ptbench/models/alexnet.py b/src/ptbench/models/alexnet.py
index 7248d3062badf3ac4661a87ef861d39c93306200..ea096ecbdb51f05679d37594fa41d7c4788d8874 100644
--- a/src/ptbench/models/alexnet.py
+++ b/src/ptbench/models/alexnet.py
@@ -44,7 +44,6 @@ class Alexnet(nn.Module):
         tensor : :py:class:`torch.Tensor`
 
         """
-
         return self.model_ft(x)
 
 
@@ -56,7 +55,6 @@ def build_alexnet(pretrained=False):
 
     module : :py:class:`torch.nn.Module`
     """
-
     model = Alexnet(pretrained=pretrained)
     model = [("normalizer", TorchVisionNormalizer()), ("model", model)]
     model = nn.Sequential(OrderedDict(model))
diff --git a/src/ptbench/models/densenet.py b/src/ptbench/models/densenet.py
index 2b28be031d3964e19cd892ded65ffee9b6fe96a4..7a98acac0c9b2ab3bd8994426807e2f99da9f7d0 100644
--- a/src/ptbench/models/densenet.py
+++ b/src/ptbench/models/densenet.py
@@ -54,7 +54,6 @@ def build_densenet(pretrained=False, nb_channels=3):
 
     module : :py:class:`torch.nn.Module`
     """
-
     model = Densenet(pretrained=pretrained)
     model = [
         ("normalizer", TorchVisionNormalizer(nb_channels=nb_channels)),
diff --git a/src/ptbench/models/densenet_rs.py b/src/ptbench/models/densenet_rs.py
index a58369309ac9528e085f45f2cf4a0bf8a108e6d6..c4448fbca8d97a60ccc041cc847bd79a0fd58056 100644
--- a/src/ptbench/models/densenet_rs.py
+++ b/src/ptbench/models/densenet_rs.py
@@ -40,7 +40,6 @@ class DensenetRS(nn.Module):
         tensor : :py:class:`torch.Tensor`
 
         """
-
         return self.model_ft(x)
 
 
@@ -52,7 +51,6 @@ def build_densenetrs():
 
     module : :py:class:`torch.nn.Module`
     """
-
     model = DensenetRS()
     model = [("normalizer", TorchVisionNormalizer()), ("model", model)]
     model = nn.Sequential(OrderedDict(model))
diff --git a/src/ptbench/models/logistic_regression.py b/src/ptbench/models/logistic_regression.py
index 7b001061cae828b57ba2e6199d5c8e07d16c58d7..7e7818c71d8ebdb636a9b863965974cb71f91fba 100644
--- a/src/ptbench/models/logistic_regression.py
+++ b/src/ptbench/models/logistic_regression.py
@@ -41,7 +41,6 @@ def build_logistic_regression(input_size):
 
     module : :py:class:`torch.nn.Module`
     """
-
     model = LogisticRegression(input_size)
     model.name = "logistic_regression"
     return model
diff --git a/src/ptbench/models/pasa.py b/src/ptbench/models/pasa.py
index f0f66727665178351c197e08c0594cd44a8dc2e2..10e6cedeb672094f62f5c1d16dbaeb9d6983ce34 100644
--- a/src/ptbench/models/pasa.py
+++ b/src/ptbench/models/pasa.py
@@ -82,7 +82,6 @@ class PASA(nn.Module):
         tensor : :py:class:`torch.Tensor`
 
         """
-
         # First convolution block
         _x = x
         x = F.relu(self.batchNorm2d_4(self.fc1(x)))  # 1st convolution
@@ -137,7 +136,6 @@ def build_pasa():
 
     module : :py:class:`torch.nn.Module`
     """
-
     model = PASA()
     model = [
         ("normalizer", TorchVisionNormalizer(nb_channels=1)),
diff --git a/src/ptbench/models/signs_to_tb.py b/src/ptbench/models/signs_to_tb.py
index 1958282d22213a1e2969240703b897cea1714c1b..f3b3d5eac6ad6169625ffc4e5388f1a2dc87f4c3 100644
--- a/src/ptbench/models/signs_to_tb.py
+++ b/src/ptbench/models/signs_to_tb.py
@@ -48,7 +48,6 @@ def build_signs_to_tb(input_size, hidden_size):
 
     module : :py:class:`torch.nn.Module`
     """
-
     model = SignsToTB(input_size, hidden_size)
     model.name = "signs_to_tb"
     return model
diff --git a/src/ptbench/scripts/aggregpred.py b/src/ptbench/scripts/aggregpred.py
index 2d9aeac4fb3432edb602d81c527937faecf8c6e8..cf43f3d0e46be8739ce96ae95ef0beac12a5782b 100644
--- a/src/ptbench/scripts/aggregpred.py
+++ b/src/ptbench/scripts/aggregpred.py
@@ -36,7 +36,6 @@ logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
 @verbosity_option(logger=logger, expose_value=False)
 def aggregpred(label_path, output_folder) -> None:
     """Aggregate multiple predictions csv files into one."""
-
     import os
     import re
     import shutil
diff --git a/src/ptbench/scripts/compare.py b/src/ptbench/scripts/compare.py
index 5b5e006d59896cdf8df24b6cc619804437efdd98..779c21ca3285ecd6442a9ed6fa6a97dbc523a742 100644
--- a/src/ptbench/scripts/compare.py
+++ b/src/ptbench/scripts/compare.py
@@ -15,7 +15,6 @@ def _validate_threshold(t, dataset):
 
     Returns parsed threshold.
     """
-
     if t is None:
         return t
 
diff --git a/src/ptbench/scripts/config.py b/src/ptbench/scripts/config.py
index 00fe26abf863b9737c3ed55b8fa4f9472099b6ef..edb47b2d5170112cf6f67ef42aa6195ad8d46707 100644
--- a/src/ptbench/scripts/config.py
+++ b/src/ptbench/scripts/config.py
@@ -21,10 +21,14 @@ def _retrieve_entry_points(
 ) -> typing.Iterable[importlib.metadata.EntryPoint]:
     """Wraps various entry-point retrieval mechanisms.
 
-    For Python 3.9 and 3.10, :py:func:`importlib.metadata.entry_points()`
-    returns a dictionary keyed by entry-point group names.  From Python 3.10
-    onwards, one may pass the ``group`` keyword to that function to enable
-    pre-filtering, or use the ``select()`` method on the returned value, which
+    For Python 3.9 and 3.10,
+    :py:func:`importlib.metadata.entry_points()`
+    returns a dictionary keyed by entry-point group names.  From Python
+    3.10
+    onwards, one may pass the ``group`` keyword to that function to
+    enable
+    pre-filtering, or use the ``select()`` method on the returned value,
+    which
     is no longer a dictionary.
 
     For anything before Python 3.8, you must use the backported library
@@ -70,7 +74,6 @@ def config():
 @verbosity_option(logger=logger)
 def list(verbose) -> None:
     """Lists configuration files installed."""
-
     entry_points = _retrieve_entry_points("ptbench.config")
     entry_point_dict = {k.name: k for k in entry_points}
 
@@ -156,7 +159,6 @@ def list(verbose) -> None:
 @verbosity_option(logger=logger)
 def describe(name, verbose) -> None:
     """Describes a specific configuration file."""
-
     entry_points = _retrieve_entry_points("ptbench.config")
     entry_point_dict = {k.name: k for k in entry_points}
 
@@ -206,7 +208,6 @@ def describe(name, verbose) -> None:
 @verbosity_option(logger=logger, expose_value=False)
 def copy(source, destination) -> None:
     """Copy a specific configuration resource so it can be modified locally."""
-
     import shutil
 
     entry_points = _retrieve_entry_points("ptbench.config")
diff --git a/src/ptbench/scripts/dataset.py b/src/ptbench/scripts/dataset.py
index d5c277c5344938518261a9b4227e85b4195b2d53..0a27ce5611165c374caa895ce79924c7c7bff090 100644
--- a/src/ptbench/scripts/dataset.py
+++ b/src/ptbench/scripts/dataset.py
@@ -17,7 +17,6 @@ logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s")
 
 def _get_supported_datasets():
     """Returns a list of supported dataset names."""
-
     basedir = importlib.resources.files(__name__.split(".", 1)[0]).joinpath(
         "data"
     )
@@ -36,7 +35,6 @@ def _get_installed_datasets() -> dict[str, str]:
     * group(0): the name of the key for the dataset directory
     * group("name"): the short name for the dataset
     """
-
     from ..utils.rc import load_rc
 
     return dict(load_rc().get("datadir", {}))
@@ -78,7 +76,6 @@ def dataset() -> None:
 @verbosity_option(logger=logger, expose_value=False)
 def list():
     """Lists all supported and configured datasets."""
-
     supported = _get_supported_datasets()
     installed = _get_installed_datasets()
 
@@ -129,7 +126,6 @@ def list():
 @verbosity_option(logger=logger, expose_value=False)
 def check(dataset, limit):
     """Checks file access on one or more datasets."""
-
     import importlib
 
     to_check = _get_installed_datasets()
diff --git a/src/ptbench/scripts/evaluate.py b/src/ptbench/scripts/evaluate.py
index 85b20b11620a4f8e3a247429fbf942a36bea8367..5100f79db1fd17ab03565fee30adb7d10b90d875 100644
--- a/src/ptbench/scripts/evaluate.py
+++ b/src/ptbench/scripts/evaluate.py
@@ -15,7 +15,6 @@ def _validate_threshold(t, dataset):
 
     Returns parsed threshold.
     """
-
     if t is None:
         return 0.5
 
diff --git a/src/ptbench/scripts/predtojson.py b/src/ptbench/scripts/predtojson.py
index ce9a23bec626312a80710942e16ba3690ed7fee1..0e90343ad98e4016b8cc27d3d0c275eddadcaf7f 100644
--- a/src/ptbench/scripts/predtojson.py
+++ b/src/ptbench/scripts/predtojson.py
@@ -38,7 +38,6 @@ def _load(data):
 
     def _to_double_tensor(col):
         """Converts a column in a dataframe to a tensor array."""
-
         pattern = re.compile(" +")
         return col.apply(lambda cell: numpy.array(eval(pattern.sub(",", cell))))
 
@@ -82,7 +81,6 @@ def _load(data):
 @verbosity_option(logger=logger, expose_value=False)
 def predtojson(label_path, output_folder) -> None:
     """Convert predictions to dataset."""
-
     import os
     import shutil
 
diff --git a/src/ptbench/scripts/train.py b/src/ptbench/scripts/train.py
index d14c133d332c15277f9369cfa8656528c26746e9..754e603c52af65abce33652143efd0e95736ddcc 100644
--- a/src/ptbench/scripts/train.py
+++ b/src/ptbench/scripts/train.py
@@ -30,7 +30,6 @@ def setup_pytorch_device(name):
     device : :py:class:`torch.device`
         The pytorch device to use, pre-configured (and checked)
     """
-
     import torch
 
     if name.startswith("cuda:"):
@@ -74,7 +73,6 @@ def set_seeds(value, all_gpus):
         If set, then reset the seed on all GPUs available at once.  This is
         normally **not** what you want if running on a single GPU
     """
-
     import random
 
     import numpy.random
@@ -100,7 +98,6 @@ def set_reproducible_cuda():
     Reference: `PyTorch page for reproducibility
     <https://pytorch.org/docs/stable/notes/randomness.html>`_.
     """
-
     import torch.backends.cudnn
 
     # ensure to use only optimization algos for cuda that are known to have
diff --git a/src/ptbench/scripts/train_analysis.py b/src/ptbench/scripts/train_analysis.py
index f5d0bc323daeff2d7454289b452cd0e4cd62f842..f32c801adb677f429b6f7fa53df11a0e6a8c9726 100644
--- a/src/ptbench/scripts/train_analysis.py
+++ b/src/ptbench/scripts/train_analysis.py
@@ -30,7 +30,6 @@ def _loss_evolution(df):
 
         matplotlib.figure.Figure: Figure to be displayed or saved to file
     """
-
     import numpy
 
     figure = plt.figure()
@@ -91,7 +90,6 @@ def _hardware_utilisation(df, const):
 
         matplotlib.figure.Figure: figure to be displayed or saved to file
     """
-
     figure = plt.figure()
     axes = figure.gca()
 
diff --git a/src/ptbench/utils/checkpointer.py b/src/ptbench/utils/checkpointer.py
index 8daf8a3eb48bf6472107df78d1df75236b41350e..36d10e5a163bed082c55f940004fc3e17f148137 100644
--- a/src/ptbench/utils/checkpointer.py
+++ b/src/ptbench/utils/checkpointer.py
@@ -66,7 +66,6 @@ class Checkpointer:
         partial : :py:class:`bool`, Optional
             If True, loading is not strict and only the model is loaded
         """
-
         if f is None:
             f = self.last_checkpoint()
 
diff --git a/src/ptbench/utils/download.py b/src/ptbench/utils/download.py
index 9c780c7e3b2e7adc3e33fdec65018820152b55fe..911d5f916c84d13bc59e42a57b1bcd75c83c292e 100644
--- a/src/ptbench/utils/download.py
+++ b/src/ptbench/utils/download.py
@@ -30,7 +30,6 @@ def download_to_tempfile(url, progress=False):
     f : :py:func:`tempfile.NamedTemporaryFile`
         A named temporary file that contains the downloaded URL
     """
-
     file_size = 0
     response = urllib.request.urlopen(url)
     meta = response.info()
diff --git a/src/ptbench/utils/measure.py b/src/ptbench/utils/measure.py
index 7b03cc9cb193e14b8794bde993f8f129d2da91c3..f0031c0c0df555280b6d5e10f94df7ec9cf7fc35 100644
--- a/src/ptbench/utils/measure.py
+++ b/src/ptbench/utils/measure.py
@@ -35,7 +35,6 @@ def tricky_division(n, d):
 
     Returns 0.0 in case of a division by zero
     """
-
     return n / (d + (d == 0))
 
 
@@ -114,7 +113,6 @@ def base_measures(tp, fp, tn, fn):
         one needs to consider the true abscence of annotations in a region as
         part of the measure.
     """
-
     return (
         tricky_division(tp, tp + fp),  # precision
         tricky_division(tp, tp + fn),  # recall
@@ -227,7 +225,6 @@ def beta_credible_region(successes, failures, lambda_, coverage):
     lower, upper: float
         The lower and upper bounds of the credible region
     """
-
     # we return the equally-tailed range
     right = (1.0 - coverage) / 2  # half-width in each side
     lower = scipy.special.betaincinv(
@@ -359,7 +356,6 @@ def bayesian_measures(tp, fp, tn, fn, lambda_, coverage):
         better proxy if one needs to consider the true abscence of annotations
         in a region as part of the measure.
     """
-
     return (
         beta_credible_region(tp, fp, lambda_, coverage),  # precision
         beta_credible_region(tp, fn, lambda_, coverage),  # recall
diff --git a/src/ptbench/utils/plot.py b/src/ptbench/utils/plot.py
index e71532f38e236c66080b7d553f1cfdc586dcec78..fd6bc1e8b1246082960c3ab153f7d2d4f32aa84f 100644
--- a/src/ptbench/utils/plot.py
+++ b/src/ptbench/utils/plot.py
@@ -47,7 +47,6 @@ def _precision_recall_canvas(title=None):
     axes : matplotlib.figure.Axes
         An axis set where to precision-recall plots should be added to
     """
-
     fig, axes1 = plt.subplots(1)
 
     # Names and bounds
@@ -133,7 +132,6 @@ def precision_recall_f1iso(data):
     figure : matplotlib.figure.Figure
         A matplotlib figure you can save or display (uses an ``agg`` backend)
     """
-
     lines = ["-", "--", "-.", ":"]
     colors = [
         "#1f77b4",
@@ -211,7 +209,6 @@ def roc_curve(data, title=None):
     figure : matplotlib.figure.Figure
         A matplotlib figure you can save or display (uses an ``agg`` backend)
     """
-
     fig, axes = plt.subplots(1)
 
     # Names and bounds
@@ -293,7 +290,6 @@ def relevance_analysis_plot(data, title=None):
     figure : matplotlib.figure.Figure
         A matplotlib figure you can save or display (uses an ``agg`` backend)
     """
-
     fig, axes = plt.subplots(1, 1, figsize=(6, 6))
 
     # Names and bounds
diff --git a/src/ptbench/utils/rc.py b/src/ptbench/utils/rc.py
index 9f6bf41f7b399e42ef7b4f7df05c0834ec580201..25049ce16cbade29912740f4aaa9c6166cc46640 100644
--- a/src/ptbench/utils/rc.py
+++ b/src/ptbench/utils/rc.py
@@ -7,5 +7,4 @@ from exposed.rc import UserDefaults
 
 def load_rc() -> UserDefaults:
     """Returns global configuration variables."""
-
     return UserDefaults("ptbench.toml")
diff --git a/src/ptbench/utils/resources.py b/src/ptbench/utils/resources.py
index d146b53cbe56d2e2b7d326dfe3f23336e4963491..d9a1baf63eb6a9dc39ed69c08344d8a0cae292c6 100644
--- a/src/ptbench/utils/resources.py
+++ b/src/ptbench/utils/resources.py
@@ -53,7 +53,6 @@ def run_nvidia_smi(query, rename=None):
         returns ``None``.  Percentage information is left alone,
         memory information is transformed to gigabytes (floating-point).
     """
-
     if _nvidia_smi is not None:
 
         if rename is None:
@@ -100,7 +99,6 @@ def gpu_constants():
         * ``memory.total``, as ``gpu_memory_total`` (transformed to gigabytes,
           :py:class:`float`)
     """
-
     return run_nvidia_smi(
         ("gpu_name", "driver_version", "memory.total"),
         ("gpu_name", "gpu_driver_version", "gpu_memory_total"),
@@ -130,7 +128,6 @@ def gpu_log():
         * ``utilization.gpu``, as ``gpu_percent``,
           (:py:class:`float`, in percent)
     """
-
     retval = run_nvidia_smi(
         (
             "memory.total",
@@ -168,7 +165,6 @@ def cpu_constants():
            in gigabytes
         1. ``cpu_count`` (:py:class:`int`): number of logical CPUs available
     """
-
     return (
         ("cpu_memory_total", psutil.virtual_memory().total / GB),
         ("cpu_count", psutil.cpu_count(logical=True)),
@@ -215,7 +211,6 @@ class CPULogger:
             5. ``cpu_open_files`` (:py:class:`int`): total number of open files by
                self and children
         """
-
         # check all cluster components and update process list
         # done so we can keep the cpu_percent() initialization
         stored_children = set(self.cluster[1:])
@@ -296,7 +291,6 @@ class _InformationGatherer:
 
     def summary(self):
         """Returns the current data."""
-
         if len(self.data[0]) == 0:
             self.logger.error("CPU/GPU logger was not able to collect any data")
         retval = []
@@ -330,7 +324,6 @@ def _monitor_worker(interval, has_gpu, main_pid, stop, queue, logging_level):
     logging_level: int
         The logging level to use for logging from launched processes
     """
-
     logger = multiprocessing.log_to_stderr(level=logging_level)
     ra = _InformationGatherer(has_gpu, main_pid, logger)
 
@@ -397,7 +390,6 @@ class ResourceMonitor:
 
     def __enter__(self):
         """Starts the monitoring process."""
-
         self.monitor.start()
         return self
 
diff --git a/src/ptbench/utils/table.py b/src/ptbench/utils/table.py
index 78d321a680aa3c4cca68ce28fa3b9297f6ca2b7c..cb4594b99a9a242bcbb45669ba344f96e8d5b418 100644
--- a/src/ptbench/utils/table.py
+++ b/src/ptbench/utils/table.py
@@ -44,7 +44,6 @@ def performance_table(data, fmt):
     table : str
         A table in a specific format
     """
-
     headers = [
         "Dataset",
         "T",
diff --git a/tests/conftest.py b/tests/conftest.py
index f268377bb5a7ca5a17a6cd7baa44288828c2a110..f1aa8c926811e1d627dbc052b6f48f76721cfb76 100644
--- a/tests/conftest.py
+++ b/tests/conftest.py
@@ -10,13 +10,11 @@ import pytest
 @pytest.fixture
 def datadir(request) -> pathlib.Path:
     """Returns the directory in which the test is sitting."""
-
     return pathlib.Path(request.module.__file__).parents[0] / "data"
 
 
 def pytest_configure(config):
     """This function is run once for pytest setup."""
-
     config.addinivalue_line(
         "markers",
         "skip_if_rc_var_not_set(name): this mark skips the test if a certain "