From a12a332a55fbccbe7cd7048f29ab3f87d7750101 Mon Sep 17 00:00:00 2001 From: dcarron <daniel.carron@idiap.ch> Date: Wed, 26 Jun 2024 10:27:54 +0200 Subject: [PATCH] [segmentation.models] Update models to handle updated samples --- src/mednet/libs/segmentation/models/driu.py | 14 +++++++------- src/mednet/libs/segmentation/models/driu_bn.py | 14 +++++++------- src/mednet/libs/segmentation/models/driu_od.py | 14 +++++++------- src/mednet/libs/segmentation/models/driu_pix.py | 14 +++++++------- src/mednet/libs/segmentation/models/hed.py | 14 +++++++------- src/mednet/libs/segmentation/models/lwnet.py | 14 +++++++------- src/mednet/libs/segmentation/models/m2unet.py | 14 +++++++------- src/mednet/libs/segmentation/models/unet.py | 14 +++++++------- 8 files changed, 56 insertions(+), 56 deletions(-) diff --git a/src/mednet/libs/segmentation/models/driu.py b/src/mednet/libs/segmentation/models/driu.py index f3a2e0d2..76608301 100644 --- a/src/mednet/libs/segmentation/models/driu.py +++ b/src/mednet/libs/segmentation/models/driu.py @@ -161,23 +161,23 @@ class DRIU(Model): super().set_normalizer(dataloader) def training_step(self, batch, batch_idx): - images = batch[0] - ground_truths = batch[1]["target"] - masks = batch[1]["mask"] + images = batch[0]["image"] + ground_truths = batch[0]["target"] + masks = batch[0]["mask"] outputs = self(self._augmentation_transforms(images)) return self._train_loss(outputs, ground_truths, masks) def validation_step(self, batch, batch_idx): - images = batch[0] - ground_truths = batch[1]["target"] - masks = batch[1]["mask"] + images = batch[0]["image"] + ground_truths = batch[0]["target"] + masks = batch[0]["mask"] outputs = self(images) return self._validation_loss(outputs, ground_truths, masks) def predict_step(self, batch, batch_idx, dataloader_idx=0): - output = self(batch[0])[1] + output = self(batch[0]["image"])[1] return torch.sigmoid(output) def configure_optimizers(self): diff --git a/src/mednet/libs/segmentation/models/driu_bn.py b/src/mednet/libs/segmentation/models/driu_bn.py index 3bb93ba9..f14f911b 100644 --- a/src/mednet/libs/segmentation/models/driu_bn.py +++ b/src/mednet/libs/segmentation/models/driu_bn.py @@ -164,23 +164,23 @@ class DRIUBN(Model): super().set_normalizer(dataloader) def training_step(self, batch, batch_idx): - images = batch[0] - ground_truths = batch[1]["target"] - masks = batch[1]["mask"] + images = batch[0]["image"] + ground_truths = batch[0]["target"] + masks = batch[0]["mask"] outputs = self(self._augmentation_transforms(images)) return self._train_loss(outputs, ground_truths, masks) def validation_step(self, batch, batch_idx): - images = batch[0] - ground_truths = batch[1]["target"] - masks = batch[1]["mask"] + images = batch[0]["image"] + ground_truths = batch[0]["target"] + masks = batch[0]["mask"] outputs = self(images) return self._validation_loss(outputs, ground_truths, masks) def predict_step(self, batch, batch_idx, dataloader_idx=0): - output = self(batch[0])[1] + output = self(batch[0]["image"])[1] return torch.sigmoid(output) def configure_optimizers(self): diff --git a/src/mednet/libs/segmentation/models/driu_od.py b/src/mednet/libs/segmentation/models/driu_od.py index 98e59623..d810c471 100644 --- a/src/mednet/libs/segmentation/models/driu_od.py +++ b/src/mednet/libs/segmentation/models/driu_od.py @@ -146,23 +146,23 @@ class DRIUOD(Model): super().set_normalizer(dataloader) def training_step(self, batch, batch_idx): - images = batch[0] - ground_truths = batch[1]["target"] - masks = batch[1]["mask"] + images = batch[0]["image"] + ground_truths = batch[0]["target"] + masks = batch[0]["mask"] outputs = self(self._augmentation_transforms(images)) return self._train_loss(outputs, ground_truths, masks) def validation_step(self, batch, batch_idx): - images = batch[0] - ground_truths = batch[1]["target"] - masks = batch[1]["mask"] + images = batch[0]["image"] + ground_truths = batch[0]["target"] + masks = batch[0]["mask"] outputs = self(images) return self._validation_loss(outputs, ground_truths, masks) def predict_step(self, batch, batch_idx, dataloader_idx=0): - output = self(batch[0])[1] + output = self(batch[0]["image"])[1] return torch.sigmoid(output) def configure_optimizers(self): diff --git a/src/mednet/libs/segmentation/models/driu_pix.py b/src/mednet/libs/segmentation/models/driu_pix.py index 6846da5a..a85ac3ab 100644 --- a/src/mednet/libs/segmentation/models/driu_pix.py +++ b/src/mednet/libs/segmentation/models/driu_pix.py @@ -150,23 +150,23 @@ class DRIUPix(Model): super().set_normalizer(dataloader) def training_step(self, batch, batch_idx): - images = batch[0] - ground_truths = batch[1]["target"] - masks = batch[1]["mask"] + images = batch[0]["image"] + ground_truths = batch[0]["target"] + masks = batch[0]["mask"] outputs = self(self._augmentation_transforms(images)) return self._train_loss(outputs, ground_truths, masks) def validation_step(self, batch, batch_idx): - images = batch[0] - ground_truths = batch[1]["target"] - masks = batch[1]["mask"] + images = batch[0]["image"] + ground_truths = batch[0]["target"] + masks = batch[0]["mask"] outputs = self(images) return self._validation_loss(outputs, ground_truths, masks) def predict_step(self, batch, batch_idx, dataloader_idx=0): - output = self(batch[0])[1] + output = self(batch[0]["image"])[1] return torch.sigmoid(output) def configure_optimizers(self): diff --git a/src/mednet/libs/segmentation/models/hed.py b/src/mednet/libs/segmentation/models/hed.py index 7e0b7705..80e4665e 100644 --- a/src/mednet/libs/segmentation/models/hed.py +++ b/src/mednet/libs/segmentation/models/hed.py @@ -165,23 +165,23 @@ class HED(Model): super().set_normalizer(dataloader) def training_step(self, batch, batch_idx): - images = batch[0] - ground_truths = batch[1]["target"] - masks = batch[1]["mask"] + images = batch[0]["image"] + ground_truths = batch[0]["target"] + masks = batch[0]["mask"] outputs = self(self._augmentation_transforms(images)) return self._train_loss(outputs, ground_truths, masks) def validation_step(self, batch, batch_idx): - images = batch[0] - ground_truths = batch[1]["target"] - masks = batch[1]["mask"] + images = batch[0]["image"] + ground_truths = batch[0]["target"] + masks = batch[0]["mask"] outputs = self(images) return self._validation_loss(outputs, ground_truths, masks) def predict_step(self, batch, batch_idx, dataloader_idx=0): - output = self(batch[0])[1] + output = self(batch[0]["image"])[1] return torch.sigmoid(output) def configure_optimizers(self): diff --git a/src/mednet/libs/segmentation/models/lwnet.py b/src/mednet/libs/segmentation/models/lwnet.py index 28bdf498..43bcb819 100644 --- a/src/mednet/libs/segmentation/models/lwnet.py +++ b/src/mednet/libs/segmentation/models/lwnet.py @@ -366,23 +366,23 @@ class LittleWNet(Model): return x1, x2 def training_step(self, batch, batch_idx): - images = batch[0] - ground_truths = batch[1]["target"] - masks = batch[1]["mask"] + images = batch[0]["image"] + ground_truths = batch[0]["target"] + masks = batch[0]["mask"] outputs = self(self._augmentation_transforms(images)) return self._train_loss(outputs, ground_truths, masks) def validation_step(self, batch, batch_idx): - images = batch[0] - ground_truths = batch[1]["target"] - masks = batch[1]["mask"] + images = batch[0]["image"] + ground_truths = batch[0]["target"] + masks = batch[0]["mask"] outputs = self(images) return self._validation_loss(outputs, ground_truths, masks) def predict_step(self, batch, batch_idx, dataloader_idx=0): - output = self(batch[0])[1] + output = self(batch[0]["image"])[1] return torch.sigmoid(output) def configure_optimizers(self): diff --git a/src/mednet/libs/segmentation/models/m2unet.py b/src/mednet/libs/segmentation/models/m2unet.py index b3715409..ccc94c29 100644 --- a/src/mednet/libs/segmentation/models/m2unet.py +++ b/src/mednet/libs/segmentation/models/m2unet.py @@ -213,23 +213,23 @@ class M2UNET(Model): super().set_normalizer(dataloader) def training_step(self, batch, batch_idx): - images = batch[0] - ground_truths = batch[1]["target"] - masks = batch[1]["mask"] + images = batch[0]["image"] + ground_truths = batch[0]["target"] + masks = batch[0]["mask"] outputs = self(self._augmentation_transforms(images)) return self._train_loss(outputs, ground_truths, masks) def validation_step(self, batch, batch_idx): - images = batch[0] - ground_truths = batch[1]["target"] - masks = batch[1]["mask"] + images = batch[0]["image"] + ground_truths = batch[0]["target"] + masks = batch[0]["mask"] outputs = self(images) return self._validation_loss(outputs, ground_truths, masks) def predict_step(self, batch, batch_idx, dataloader_idx=0): - output = self(batch[0])[1] + output = self(batch[0]["image"])[1] return torch.sigmoid(output) def configure_optimizers(self): diff --git a/src/mednet/libs/segmentation/models/unet.py b/src/mednet/libs/segmentation/models/unet.py index 98578d1d..36136bcb 100644 --- a/src/mednet/libs/segmentation/models/unet.py +++ b/src/mednet/libs/segmentation/models/unet.py @@ -154,23 +154,23 @@ class Unet(Model): super().set_normalizer(dataloader) def training_step(self, batch, batch_idx): - images = batch[0] - ground_truths = batch[1]["target"] - masks = batch[1]["mask"] + images = batch[0]["image"] + ground_truths = batch[0]["target"] + masks = batch[0]["mask"] outputs = self(self._augmentation_transforms(images)) return self._train_loss(outputs, ground_truths, masks) def validation_step(self, batch, batch_idx): - images = batch[0] - ground_truths = batch[1]["target"] - masks = batch[1]["mask"] + images = batch[0]["image"] + ground_truths = batch[0]["target"] + masks = batch[0]["mask"] outputs = self(images) return self._validation_loss(outputs, ground_truths, masks) def predict_step(self, batch, batch_idx, dataloader_idx=0): - output = self(batch[0])[1] + output = self(batch[0]["image"])[1] return torch.sigmoid(output) def configure_optimizers(self): -- GitLab