diff --git a/src/ptbench/configs/models/alexnet.py b/src/ptbench/configs/models/alexnet.py
index cf8bfd35aa10ad3493be9483ba0347fc8ebb7da1..2361b886d500fee740e456f2505a36da4fdaf4e3 100644
--- a/src/ptbench/configs/models/alexnet.py
+++ b/src/ptbench/configs/models/alexnet.py
@@ -6,19 +6,30 @@
 
 from torch import empty
 from torch.nn import BCEWithLogitsLoss
+from torch.optim import SGD
 
 from ...models.alexnet import Alexnet
 
-# config
+# optimizer
+optimizer = SGD
 optimizer_configs = {"lr": 0.01, "momentum": 0.1}
 
-# optimizer
-optimizer = "SGD"
 # criterion
 criterion = BCEWithLogitsLoss(pos_weight=empty(1))
 criterion_valid = BCEWithLogitsLoss(pos_weight=empty(1))
 
+from ...data.transforms import ElasticDeformation
+
+augmentation_transforms = [
+    ElasticDeformation(p=0.8),
+]
+
 # model
 model = Alexnet(
-    criterion, criterion_valid, optimizer, optimizer_configs, pretrained=False
+    criterion,
+    criterion_valid,
+    optimizer,
+    optimizer_configs,
+    pretrained=False,
+    augmentation_transforms=augmentation_transforms,
 )
diff --git a/src/ptbench/configs/models/alexnet_pretrained.py b/src/ptbench/configs/models/alexnet_pretrained.py
index 1d196be6f79ea5c70987c1d1a66eaf32e8e7ca4c..0dc7e5d67d007cf5e7e358e7fa75243a47047c4b 100644
--- a/src/ptbench/configs/models/alexnet_pretrained.py
+++ b/src/ptbench/configs/models/alexnet_pretrained.py
@@ -6,19 +6,30 @@
 
 from torch import empty
 from torch.nn import BCEWithLogitsLoss
+from torch.optim import SGD
 
 from ...models.alexnet import Alexnet
 
-# config
-optimizer_configs = {"lr": 0.001, "momentum": 0.1}
-
 # optimizer
-optimizer = "SGD"
+optimizer = SGD
+optimizer_configs = {"lr": 0.01, "momentum": 0.1}
+
 # criterion
 criterion = BCEWithLogitsLoss(pos_weight=empty(1))
 criterion_valid = BCEWithLogitsLoss(pos_weight=empty(1))
 
+from ...data.transforms import ElasticDeformation
+
+augmentation_transforms = [
+    ElasticDeformation(p=0.8),
+]
+
 # model
 model = Alexnet(
-    criterion, criterion_valid, optimizer, optimizer_configs, pretrained=True
+    criterion,
+    criterion_valid,
+    optimizer,
+    optimizer_configs,
+    pretrained=True,
+    augmentation_transforms=augmentation_transforms,
 )
diff --git a/src/ptbench/models/alexnet.py b/src/ptbench/models/alexnet.py
index ba9bf05f7428d759489bd744f8ec35c3b43bab02..55898b6759e4e471607bbe87cff0de3fb074724c 100644
--- a/src/ptbench/models/alexnet.py
+++ b/src/ptbench/models/alexnet.py
@@ -2,12 +2,15 @@
 #
 # SPDX-License-Identifier: GPL-3.0-or-later
 
+import logging
+
 import lightning.pytorch as pl
 import torch
 import torch.nn as nn
 import torchvision.models as models
+import torchvision.transforms
 
-from .normalizer import TorchVisionNormalizer
+logger = logging.getLogger(__name__)
 
 
 class Alexnet(pl.LightningModule):
@@ -18,25 +21,38 @@ class Alexnet(pl.LightningModule):
 
     def __init__(
         self,
-        criterion,
-        criterion_valid,
-        optimizer,
-        optimizer_configs,
+        criterion=None,
+        criterion_valid=None,
+        optimizer=None,
+        optimizer_configs=None,
         pretrained=False,
+        augmentation_transforms=[],
     ):
         super().__init__()
 
-        self.save_hyperparameters(ignore=["criterion", "criterion_valid"])
-
         self.name = "AlexNet"
 
-        # Load pretrained model
-        weights = (
-            None if pretrained is False else models.AlexNet_Weights.DEFAULT
+        self.augmentation_transforms = torchvision.transforms.Compose(
+            augmentation_transforms
         )
-        self.model_ft = models.alexnet(weights=weights)
 
-        self.normalizer = TorchVisionNormalizer(nb_channels=1)
+        self.criterion = criterion
+        self.criterion_valid = criterion_valid
+
+        self.optimizer = optimizer
+        self.optimizer_configs = optimizer_configs
+
+        self.normalizer = None
+        self.pretrained = pretrained
+
+        # Load pretrained model
+        if not pretrained:
+            weights = None
+        else:
+            logger.info("Loading pretrained model weights")
+            weights = models.AlexNet_Weights.DEFAULT
+
+        self.model_ft = models.alexnet(weights=weights)
 
         # Adapt output features
         self.model_ft.classifier[4] = nn.Linear(4096, 512)
@@ -48,9 +64,69 @@ class Alexnet(pl.LightningModule):
 
         return x
 
+    def set_normalizer(self, dataloader: torch.utils.data.DataLoader) -> None:
+        """Initializes the normalizer for the current model.
+
+        This function is NOOP if ``pretrained = True`` (normalizer set to
+        imagenet weights, during contruction).
+
+        Parameters
+        ----------
+
+        dataloader: :py:class:`torch.utils.data.DataLoader`
+            A torch Dataloader from which to compute the mean and std.
+            Will not be used if the model is pretrained.
+        """
+        if self.pretrained:
+            from .normalizer import make_imagenet_normalizer
+
+            logger.warning(
+                "ImageNet pre-trained densenet model - NOT "
+                "computing z-norm factors from training data. "
+                "Using preset factors from torchvision."
+            )
+            self.normalizer = make_imagenet_normalizer()
+        else:
+            from .normalizer import make_z_normalizer
+
+            logger.info(
+                "Uninitialised densenet model - "
+                "computing z-norm factors from training data."
+            )
+            self.normalizer = make_z_normalizer(dataloader)
+
+    def set_bce_loss_weights(self, datamodule):
+        """Reweights loss weights if BCEWithLogitsLoss is used.
+
+        Parameters
+        ----------
+
+        datamodule:
+            A datamodule implementing train_dataloader() and val_dataloader()
+        """
+        from ..data.dataset import _get_positive_weights
+
+        if isinstance(self.criterion, torch.nn.BCEWithLogitsLoss):
+            logger.info("Reweighting BCEWithLogitsLoss training criterion.")
+            train_positive_weights = _get_positive_weights(
+                datamodule.train_dataloader()
+            )
+            self.criterion = torch.nn.BCEWithLogitsLoss(
+                pos_weight=train_positive_weights
+            )
+
+        if isinstance(self.criterion_valid, torch.nn.BCEWithLogitsLoss):
+            logger.info("Reweighting BCEWithLogitsLoss validation criterion.")
+            validation_positive_weights = _get_positive_weights(
+                datamodule.val_dataloader()["validation"]
+            )
+            self.criterion_valid = torch.nn.BCEWithLogitsLoss(
+                pos_weight=validation_positive_weights
+            )
+
     def training_step(self, batch, batch_idx):
-        images = batch[1]
-        labels = batch[2]
+        images = batch[0]
+        labels = batch[1]["label"]
 
         # Increase label dimension if too low
         # Allows single and multiclass usage
@@ -58,17 +134,20 @@ class Alexnet(pl.LightningModule):
             labels = torch.reshape(labels, (labels.shape[0], 1))
 
         # Forward pass on the network
-        outputs = self(images)
+        augmented_images = [
+            self.augmentation_transforms(img).to(self.device) for img in images
+        ]
+        # Combine list of augmented images back into a tensor
+        augmented_images = torch.cat(augmented_images, 0).view(images.shape)
+        outputs = self(augmented_images)
 
-        # Manually move criterion to selected device, since not part of the model.
-        self.hparams.criterion = self.hparams.criterion.to(self.device)
-        training_loss = self.hparams.criterion(outputs, labels.float())
+        training_loss = self.criterion(outputs, labels.float())
 
         return {"loss": training_loss}
 
     def validation_step(self, batch, batch_idx, dataloader_idx=0):
-        images = batch[1]
-        labels = batch[2]
+        images = batch[0]
+        labels = batch[1]["label"]
 
         # Increase label dimension if too low
         # Allows single and multiclass usage
@@ -78,11 +157,7 @@ class Alexnet(pl.LightningModule):
         # data forwarding on the existing network
         outputs = self(images)
 
-        # Manually move criterion to selected device, since not part of the model.
-        self.hparams.criterion_valid = self.hparams.criterion_valid.to(
-            self.device
-        )
-        validation_loss = self.hparams.criterion_valid(outputs, labels.float())
+        validation_loss = self.criterion_valid(outputs, labels.float())
 
         if dataloader_idx == 0:
             return {"validation_loss": validation_loss}
@@ -90,8 +165,9 @@ class Alexnet(pl.LightningModule):
             return {f"extra_validation_loss_{dataloader_idx}": validation_loss}
 
     def predict_step(self, batch, batch_idx, dataloader_idx=0, grad_cams=False):
-        names = batch[0]
-        images = batch[1]
+        images = batch[0]
+        labels = batch[1]["label"]
+        names = batch[1]["name"]
 
         outputs = self(images)
         probabilities = torch.sigmoid(outputs)
@@ -101,11 +177,8 @@ class Alexnet(pl.LightningModule):
         if isinstance(outputs, list):
             outputs = outputs[-1]
 
-        return names[0], torch.flatten(probabilities), torch.flatten(batch[2])
+        return names[0], torch.flatten(probabilities), torch.flatten(labels)
 
     def configure_optimizers(self):
-        optimizer = getattr(torch.optim, self.hparams.optimizer)(
-            self.parameters(), **self.hparams.optimizer_configs
-        )
-
+        optimizer = self.optimizer(self.parameters(), **self.optimizer_configs)
         return optimizer