Skip to content
Snippets Groups Projects
Commit 22d59e8c authored by ogueler@idiap.ch's avatar ogueler@idiap.ch
Browse files

added alternative configurations for tbx11k

parent b68823ca
No related branches found
No related tags found
2 merge requests!5Tbx11k,!4Moved code to lightning
Showing
with 340 additions and 0 deletions
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 0)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_0")
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 0, RGB)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_0", RGB=True)
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 1)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_1")
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 1, RGB)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_1", RGB=True)
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 2)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_2")
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 2, RGB)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_2", RGB=True)
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 3)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_3")
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 3, RGB)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_3", RGB=True)
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 4)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_4")
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 4, RGB)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_4", RGB=True)
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 5)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_5")
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 5, RGB)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_5", RGB=True)
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 6)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_6")
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 6, RGB)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_6", RGB=True)
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 7)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_7")
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 7, RGB)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_7", RGB=True)
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 8)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_8")
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 8, RGB)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_8", RGB=True)
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 9)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_9")
# Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""TBX11k simplified dataset for TB detection (cross validation fold 9, RGB)
* Split reference: first 62.6% of CXR for "train", 16% for "validation",
* 21.4% for "test"
* This split consists of the 4 labels "healthy", "latent TB", "sick & non-TB",
* and "active TB"
* This configuration resolution: 512 x 512 (default)
* See :py:mod:`ptbench.data.tbx11k_v3` for dataset details
"""
from . import _maker
dataset = _maker("fold_9", RGB=True)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment