From 21440564e594ec010170db43f92fdeb80dbd9b57 Mon Sep 17 00:00:00 2001 From: dcarron <daniel.carron@idiap.ch> Date: Wed, 12 Jun 2024 16:09:47 +0200 Subject: [PATCH] [doc] Add segmentation configs in documentation --- doc/api.rst | 7 + doc/config.rst | 155 +++++++++++-- doc/install.rst | 217 ++++++++++++++++++ doc/links.rst | 102 ++++++++ doc/references.rst | 95 ++++++++ .../segmentation/config/data/cxr8/default.py | 8 +- .../config/data/drionsdb/expert1.py | 1 - .../config/data/drionsdb/expert2.py | 1 - .../config/data/drishtigs1/datamodule.py | 7 +- .../config/data/drishtigs1/optic_cup_all.py | 1 - .../config/data/drishtigs1/optic_cup_any.py | 1 - .../config/data/drishtigs1/optic_disc_all.py | 1 - .../config/data/drishtigs1/optic_disc_any.py | 1 - .../segmentation/config/data/drive/default.py | 1 - .../config/data/drive/drive_2nd.py | 1 - .../segmentation/config/data/hrf/default.py | 1 - .../config/data/iostar/optic_disc.py | 7 + .../segmentation/config/data/iostar/vessel.py | 7 + .../config/data/jsrt/datamodule.py | 4 +- .../segmentation/config/data/jsrt/default.py | 1 - .../config/data/montgomery/default.py | 14 +- .../segmentation/config/data/refuge/cup.py | 1 - .../segmentation/config/data/refuge/disc.py | 1 - .../config/data/rimoner3/cup_exp1.py | 1 - .../config/data/rimoner3/cup_exp2.py | 1 - .../config/data/rimoner3/datamodule.py | 3 +- .../config/data/rimoner3/disc_exp1.py | 1 - .../config/data/rimoner3/disc_exp2.py | 1 - .../config/data/shenzhen/default.py | 1 - .../libs/segmentation/config/data/stare/ah.py | 8 + .../libs/segmentation/config/data/stare/vk.py | 8 + .../libs/segmentation/scripts/evaluate.py | 6 +- 32 files changed, 597 insertions(+), 68 deletions(-) diff --git a/doc/api.rst b/doc/api.rst index c1d22655..ac0884fb 100644 --- a/doc/api.rst +++ b/doc/api.rst @@ -209,10 +209,17 @@ CNN and other models implemented. .. autosummary:: :toctree: api/models + mednet.libs.segmentation.models.driu_bn + mednet.libs.segmentation.models.driu_od + mednet.libs.segmentation.models.driu_pix + mednet.libs.segmentation.models.driu + mednet.libs.segmentation.models.hed mednet.libs.segmentation.models.losses mednet.libs.segmentation.models.lwnet + mednet.libs.segmentation.models.m2unet mednet.libs.segmentation.models.separate mednet.libs.segmentation.models.typing + mednet.libs.segmentation.models.unet .. _mednet.libs.segmentation.api.utils: diff --git a/doc/config.rst b/doc/config.rst index 208ef993..1af4589c 100644 --- a/doc/config.rst +++ b/doc/config.rst @@ -2,19 +2,25 @@ .. .. SPDX-License-Identifier: GPL-3.0-or-later +===================== +Preset Configurations +===================== + + .. _mednet.libs.classification.config: -Preset Configurations ---------------------- +------------------------------------ +Classification Preset Configurations +------------------------------------ This module contains preset configurations for baseline CNN architectures and -DataModules. +DataModules in a classification task. .. _mednet.libs.classification.config.models: Pre-configured Models -===================== +^^^^^^^^^^^^^^^^^^^^^ Pre-configured models you can readily use. @@ -32,32 +38,16 @@ Pre-configured models you can readily use. mednet.libs.classification.config.models.pasa -Data Augmentations -================== - -Sequences of data augmentations you can readily use. - -.. _mednet.libs.common.config.augmentations: - -.. autosummary:: - :toctree: api/config.augmentations - :template: config.rst - - mednet.libs.common.config.augmentations.elastic - mednet.libs.common.config.augmentations.affine - .. _mednet.libs.classification.config.datamodules: DataModule support -================== +^^^^^^^^^^^^^^^^^^ Base DataModules and raw data loaders for the various databases currently supported in this package, for your reference. Each pre-configured DataModule can receive the name of one or more splits as argument to build a fully functional DataModule that can be used in training, prediction or testing. -.. _mednet.config.datamodules: - .. autosummary:: :toctree: api/config.datamodules @@ -79,7 +69,7 @@ functional DataModule that can be used in training, prediction or testing. .. _mednet.libs.classification.config.datamodule-instances: Pre-configured DataModules -========================== +^^^^^^^^^^^^^^^^^^^^^^^^^^ DataModules provide access to preset pytorch dataloaders for training, validating, testing and running prediction tasks. Each of the pre-configured @@ -109,7 +99,7 @@ DataModule is based on one (or more) of the :ref:`supported base DataModules .. _mednet.libs.classification.config.datamodule-instances.folds: Cross-validation DataModules -============================ +^^^^^^^^^^^^^^^^^^^^^^^^^^^^ We support cross-validation with precise preset folds. In this section, you will find the configuration for the first fold (fold-0) for all supported @@ -134,4 +124,123 @@ DataModules. Nine other folds are available for every configuration (from 1 to mednet.libs.classification.config.data.tbx11k.v2_fold_0 +.. _mednet.libs.segmentation.config: + +------------------------------------ +Classification Preset Configurations +------------------------------------ + +This module contains preset configurations for baseline CNN architectures and +DataModules in a segmentation task. + + +.. _mednet.libs.segmentation.config.models: + +Pre-configured Models +^^^^^^^^^^^^^^^^^^^^^ + +Pre-configured models you can readily use. + +.. autosummary:: + :toctree: api/config.models + :template: config.rst + + mednet.libs.segmentation.config.models.driu_bn + mednet.libs.segmentation.config.models.driu_od + mednet.libs.segmentation.config.models.driu_pix + mednet.libs.segmentation.config.models.driu + mednet.libs.segmentation.config.models.hed + mednet.libs.segmentation.config.models.lwnet + mednet.libs.segmentation.config.models.m2unet + mednet.libs.segmentation.config.models.unet + + + +.. _mednet.libs.segmentation.config.datamodules: + +DataModule support +^^^^^^^^^^^^^^^^^^ + +Base DataModules and raw data loaders for the various databases currently +supported in this package, for your reference. Each pre-configured DataModule +can receive the name of one or more splits as argument to build a fully +functional DataModule that can be used in training, prediction or testing. + +.. autosummary:: + :toctree: api/config.datamodules + + mednet.libs.segmentation.config.data.chasedb1.datamodule + mednet.libs.segmentation.config.data.cxr8.datamodule + mednet.libs.segmentation.config.data.drhagis.datamodule + mednet.libs.segmentation.config.data.drionsdb.datamodule + mednet.libs.segmentation.config.data.drishtigs1.datamodule + mednet.libs.segmentation.config.data.drive.datamodule + mednet.libs.segmentation.config.data.hrf.datamodule + mednet.libs.segmentation.config.data.iostar.datamodule + mednet.libs.segmentation.config.data.jsrt.datamodule + mednet.libs.segmentation.config.data.montgomery.datamodule + mednet.libs.segmentation.config.data.refuge.datamodule + mednet.libs.segmentation.config.data.rimoner3.datamodule + mednet.libs.segmentation.config.data.shenzhen.datamodule + mednet.libs.segmentation.config.data.stare.datamodule + + +.. _mednet.libs.segmentation.config.datamodule-instances: + +Pre-configured DataModules +^^^^^^^^^^^^^^^^^^^^^^^^^^ + +DataModules provide access to preset pytorch dataloaders for training, +validating, testing and running prediction tasks. Each of the pre-configured +DataModule is based on one (or more) of the :ref:`supported base DataModules +<mednet.libs.segmentation.config.datamodules>`. + +.. autosummary:: + :toctree: api/config.datamodule-instances + :template: config.rst + + mednet.libs.segmentation.config.data.chasedb1.first_annotator + mednet.libs.segmentation.config.data.chasedb1.second_annotator + mednet.libs.segmentation.config.data.cxr8.default + mednet.libs.segmentation.config.data.drhagis.default + mednet.libs.segmentation.config.data.drionsdb.expert1 + mednet.libs.segmentation.config.data.drionsdb.expert2 + mednet.libs.segmentation.config.data.drishtigs1.optic_cup_all + mednet.libs.segmentation.config.data.drishtigs1.optic_cup_any + mednet.libs.segmentation.config.data.drishtigs1.optic_disc_all + mednet.libs.segmentation.config.data.drishtigs1.optic_disc_any + mednet.libs.segmentation.config.data.drive.default + mednet.libs.segmentation.config.data.drive.drive_2nd + mednet.libs.segmentation.config.data.hrf.default + mednet.libs.segmentation.config.data.iostar.optic_disc + mednet.libs.segmentation.config.data.iostar.vessel + mednet.libs.segmentation.config.data.jsrt.default + mednet.libs.segmentation.config.data.montgomery.default + mednet.libs.segmentation.config.data.refuge.disc + mednet.libs.segmentation.config.data.refuge.cup + mednet.libs.segmentation.config.data.rimoner3.cup_exp1 + mednet.libs.segmentation.config.data.rimoner3.cup_exp2 + mednet.libs.segmentation.config.data.rimoner3.disc_exp1 + mednet.libs.segmentation.config.data.rimoner3.disc_exp2 + mednet.libs.segmentation.config.data.shenzhen.default + mednet.libs.segmentation.config.data.stare.ah + mednet.libs.segmentation.config.data.stare.vk + + +------------------ +Data Augmentations +------------------ + +Sequences of data augmentations you can readily use. + +.. _mednet.libs.common.config.augmentations: + +.. autosummary:: + :toctree: api/config.augmentations + :template: config.rst + + mednet.libs.common.config.augmentations.elastic + mednet.libs.common.config.augmentations.affine + + .. include:: links.rst diff --git a/doc/install.rst b/doc/install.rst index 820e9061..61bfda53 100644 --- a/doc/install.rst +++ b/doc/install.rst @@ -294,4 +294,221 @@ Please contact the authors of these databases to have access to the data. - 243 +.. _mednet.libs.segmentation.setup.databases.retinography: + +Retinography +------------ + + +.. list-table:: Supported Retinography Datasets (``*``: provided within this package) + + * - Dataset + - Reference + - H x W + - Samples + - Mask + - Vessel + - OD + - Cup + - Split Reference + - Train + - Test + * - DRIVE_ + - [DRIVE-2004]_ + - 584 x 565 + - 40 + - ``x`` + - ``x`` + - + - + - [DRIVE-2004]_ + - 20 + - 20 + * - STARE_ + - [STARE-2000]_ + - 605 x 700 + - 20 + - ``*`` + - ``x`` + - + - + - [MANINIS-2016]_ + - 10 + - 10 + * - CHASE-DB1_ + - [CHASEDB1-2012]_ + - 960 x 999 + - 28 + - ``*`` + - ``x`` + - + - + - [CHASEDB1-2012]_ + - 8 + - 20 + * - HRF_ + - [HRF-2013]_ + - 2336 x 3504 + - 45 + - ``x`` + - ``x`` + - + - + - [ORLANDO-2017]_ + - 15 + - 30 + * - IOSTAR_ + - [IOSTAR-2016]_ + - 1024 x 1024 + - 30 + - ``x`` + - ``x`` + - ``x`` + - + - [MEYER-2017]_ + - 20 + - 10 + * - DRIONS-DB_ + - [DRIONSDB-2008]_ + - 400 x 600 + - 110 + - + - + - ``x`` + - + - [MANINIS-2016]_ + - 60 + - 50 + * - `RIM-ONE r3`_ + - [RIMONER3-2015]_ + - 1424 x 1072 + - 159 + - + - + - ``x`` + - ``x`` + - [MANINIS-2016]_ + - 99 + - 60 + * - Drishti-GS1_ + - [DRISHTIGS1-2014]_ + - varying + - 101 + - + - + - ``x`` + - ``x`` + - [DRISHTIGS1-2014]_ + - 50 + - 51 + * - REFUGE_ + - [REFUGE-2018]_ + - 2056 x 2124 (1634 x 1634) + - 1200 + - + - + - ``x`` + - ``x`` + - [REFUGE-2018]_ + - 400 (+400) + - 400 + * - DRHAGIS_ + - [DRHAGIS-2017]_ + - Varying + - 39 + - ``x`` + - ``x`` + - + - + - [DRHAGIS-2017]_ + - 19 + - 20 + +.. warning:: **REFUGE Dataset Support** + + The original directory ``Training400/AMD`` in REFUGE is considered to be + replaced by an updated version provided by the `AMD Grand-Challenge`_ (with + matching names). + + The changes concerns images ``A0012.jpg``, which was corrupted in REFUGE, and + ``A0013.jpg``, which only exists in the AMD Grand-Challenge version. + + +.. _mednet.libs.segmentation.setup.databases.xray: + +X-Ray +----- + +.. list-table:: Supported X-Ray Datasets + + * - Dataset + - Reference + - H x W + - Radiography Type + - Samples + - Mask + - Split Reference + - Train + - Test + * - `Montgomery County`_ + - [MC-2014]_ + - 4020 x 4892, or 4892 x 4020 + - Digital Radiography (DR) + - 138 + - ``*`` + - [GAAL-2020]_ + - 96 (+14) + - 28 + * - JSRT_ + - [JSRT-2000]_ + - 2048 x 2048 + - Digitized Radiography (laser digitizer) + - 247 + - ``*`` + - [GAAL-2020]_ + - 172 (+25) + - 50 + * - Shenzhen_ + - [SHENZHEN-2014]_ + - Varying + - Computed Radiography (CR) + - 662 + - ``*`` + - [GAAL-2020]_ + - 396 (+56) + - 114 + * - CXR8_ + - [CXR8-2017]_ + - 1024 x 1024 + - Digital Radiography + - 112120 + - ``x`` + - [GAAL-2020]_ + - 78484 (+11212) + - 22424 + +.. warning:: **SHENZHEN/JSRT/CXR8 Dataset Support** + + For some datasets (in which the annotations/masks are downloaded separately + from the dataset with the original images), both the original images and + annotations must be downloaded and placed inside the same directory, to match + the dataset reference dictionary's path. + + * The Shenzhen_ root directory should then contain at least these two + subdirectories: + + - ``CXR_png/`` (directory containing the CXR images) + - ``mask/`` (contains masks downloaded from `Shenzhen Annotations`_) + + * The CXR8_ root directory: + + - ``images/`` (directory containing the CXR images) + - ``segmentations/`` (contains masks downloaded from `CXR8 Annotations`_) + + * The JSRT_ root directory: + + - ``All247images/`` (directory containing the CXR images, in raw format) + - ``scratch/`` (contains masks downloaded from `JSRT Annotations`_) + + .. include:: links.rst diff --git a/doc/links.rst b/doc/links.rst index 674f4bb5..1f405de1 100644 --- a/doc/links.rst +++ b/doc/links.rst @@ -28,9 +28,111 @@ .. _TBX11K: https://mmcheng.net/tb/ .. _TBX11K_simplified: https://www.kaggle.com/datasets/vbookshelf/tbx11k-simplified +.. _drive: https://github.com/wfdubowen/Retina-Unet/tree/master/DRIVE/ +.. _stare: http://cecas.clemson.edu/~ahoover/stare/ +.. _hrf: https://www5.cs.fau.de/research/data/fundus-images/ +.. _iostar: http://www.retinacheck.org/datasets +.. _chase-db1: https://blogs.kingston.ac.uk/retinal/chasedb1/ +.. _drions-db: http://www.ia.uned.es/~ejcarmona/DRIONS-DB.html +.. _rim-one r3: http://medimrg.webs.ull.es/research/downloads/ +.. _drishti-gs1: http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php +.. _refuge: https://refuge.grand-challenge.org/Details/ +.. _amd grand-challenge: https://amd.grand-challenge.org/ +.. _drhagis: https://personalpages.manchester.ac.uk/staff/niall.p.mcloughlin/ +.. _montgomery county: https://openi.nlm.nih.gov/faq#faq-tb-coll +.. _jsrt: http://db.jsrt.or.jp/eng.php +.. _jsrt-kaggle: https://www.kaggle.com/datasets/raddar/nodules-in-chest-xrays-jsrt +.. _cxr8: https://nihcc.app.box.com/v/ChestXray-NIHCC + +.. Annotation data websites +.. _shenzhen annotations: https://www.kaggle.com/yoctoman/shcxr-lung-mask +.. _cxr8 annotations: https://github.com/lucasmansilla/NIH_chest_xray14_segmentations +.. _jsrt annotations: https://www.isi.uu.nl/Research/Databases/SCR/download.php + .. models .. _imagenet: https://www.image-net.org .. _alexnet: https://en.wikipedia.org/wiki/AlexNet .. _alexnet-pytorch: https://pytorch.org/hub/pytorch_vision_alexnet/ .. _densenet: https://arxiv.org/abs/1608.06993 .. _densenet-pytorch: https://pytorch.org/hub/pytorch_vision_densenet/ + +.. Pretrained models + +.. _baselines_driu_drive: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/baselines/driu-drive-1947d9fa.pth +.. _baselines_hed_drive: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/baselines/hed-drive-c8b86082.pth +.. _baselines_m2unet_drive: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/baselines/m2unet-drive-ce4c7a53.pth +.. _baselines_unet_drive: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/baselines/unet-drive-0ac99e2e.pth +.. _baselines_driu_stare: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/baselines/driu-stare-79dec93a.pth +.. _baselines_hed_stare: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/baselines/hed-stare-fcdb7671.pth +.. _baselines_m2unet_stare: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/baselines/m2unet-stare-952778c2.pth +.. _baselines_unet_stare: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/baselines/unet-stare-49b6a6d0.pth +.. _baselines_driu_chase: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/baselines/driu-chasedb1-e7cf53c3.pth +.. _baselines_hed_chase: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/baselines/hed-chasedb1-55ec6d34.pth +.. _baselines_m2unet_chase: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/baselines/m2unet-chasedb1-0becbf29.pth +.. _baselines_unet_chase: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/baselines/unet-chasedb1-be41b5a5.pth +.. _baselines_driu_hrf: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/baselines/driu-hrf-c9e6a889.pth +.. _baselines_hed_hrf: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/baselines/hed-hrf-3f4ab1c4.pth +.. _baselines_m2unet_hrf: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/baselines/m2unet-hrf-2c3f2485.pth +.. _baselines_unet_hrf: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/baselines/unet-hrf-9a559821.pth +.. _baselines_driu_iostar: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/baselines/driu-iostar-vessel-ef8cc27b.pth +.. _baselines_hed_iostar: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/baselines/hed-iostar-vessel-37cfaee1.pth +.. _baselines_m2unet_iostar: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/baselines/m2unet-iostar-vessel-223b61ef.pth +.. _baselines_unet_iostar: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/baselines/unet-iostar-vessel-86c78e87.pth + +.. _baselines_m2unet_jsrt: https://bobconda.lab.idiap.ch/public/data/bob/deepdraw/master/baselines/m2unet-jsrt-5f062009.pth +.. _baselines_m2unet_montgomery: https://bobconda.lab.idiap.ch/public/data/bob/deepdraw/master/baselines/m2unet-montgomery-1c24519a.pth +.. _baselines_m2unet_shenzhen: https://bobconda.lab.idiap.ch/public/data/bob/deepdraw/master/baselines/m2unet-shenzhen-7c9688e6.pth +.. _baselines_lwnet_jsrt: https://bobconda.lab.idiap.ch/public/data/bob/deepdraw/master/baselines/lwnet-jsrt-73807eb1.pth +.. _baselines_lwnet_montgomery: https://bobconda.lab.idiap.ch/public/data/bob/deepdraw/master/baselines/lwnet-montgomery-9c6bf39b.pth +.. _baselines_lwnet_shenzhen: https://bobconda.lab.idiap.ch/public/data/bob/deepdraw/master/baselines/lwnet-shenzhen-10196d9c.pth + +.. _covd_driu_drive: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/covd/driu/drive/model.pth +.. _covd_hed_drive: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/covd/hed/drive/model.pth +.. _covd_m2unet_drive: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/covd/m2unet/drive/model.pth +.. _covd_unet_drive: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/covd/unet/drive/model.pth +.. _covd_driu_stare: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/covd/driu/stare/model.pth +.. _covd_hed_stare: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/covd/hed/stare/model.pth +.. _covd_m2unet_stare: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/covd/m2unet/stare/model.pth +.. _covd_unet_stare: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/covd/unet/stare/model.pth +.. _covd_driu_chase: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/covd/driu/chasedb1/model.pth +.. _covd_hed_chase: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/covd/hed/chasedb1/model.pth +.. _covd_m2unet_chase: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/covd/m2unet/chasedb1/model.pth +.. _covd_unet_chase: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/covd/unet/chasedb1/model.pth +.. _covd_driu_hrf: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/covd/driu/hrf/model.pth +.. _covd_hed_hrf: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/covd/hed/hrf/model.pth +.. _covd_m2unet_hrf: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/covd/m2unet/hrf/model.pth +.. _covd_unet_hrf: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/covd/unet/hrf/model.pth +.. _covd_driu_iostar: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/covd/driu/iostar-vessel/model.pth +.. _covd_hed_iostar: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/covd/hed/iostar-vessel/model.pth +.. _covd_m2unet_iostar: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/covd/m2unet/iostar-vessel/model.pth +.. _covd_unet_iostar: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/covd/unet/iostar-vessel/model.pth + +.. DRIVE +.. _driu_drive.pth: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/DRIU_DRIVE.pth +.. _m2unet_drive.pth: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/M2UNet_DRIVE.pth +.. _m2unet_covd-drive.pth: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/M2UNet_COVD-DRIVE.pth +.. _m2unet_covd-drive_ssl.pth: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/M2UNet_COVD-DRIVE_SSL.pth + +.. STARE +.. _driu_stare.pth: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/DRIU_STARE.pth +.. _m2unet_stare.pth: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/M2UNet_STARE.pth +.. _m2unet_covd-stare.pth: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/M2UNet_COVD-STARE.pth +.. _m2unet_covd-stare_ssl.pth: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/M2UNet_COVD-STARE_SSL.pth + +.. CHASE-DB1 +.. _driu_chasedb1.pth: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/DRIU_CHASEDB1.pth +.. _m2unet_chasedb1.pth: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/M2UNet_CHASEDB1.pth +.. _m2unet_covd-chasedb1.pth: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/M2UNet_COVD-CHASEDB1.pth +.. _m2unet_covd-chasedb1_ssl.pth: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/M2UNet_COVD-CHASEDB1_SSL.pth + +.. IOSTAR +.. _driu_iostar.pth: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/DRIU_IOSTARVESSEL.pth +.. _m2unet_iostar.pth: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/M2UNet_IOSTARVESSEL.pth +.. _m2unet_covd-iostar.pth: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/M2UNet_COVD-IOSTAR.pth +.. _m2unet_covd-iostar_ssl.pth: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/M2UNet_COVD-IOSTAR_SSL.pth + +.. HRF +.. _driu_hrf.pth: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/DRIU_HRF1168.pth +.. _m2unet_hrf.pth: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/M2UNet_HRF1168.pth +.. _m2unet_covd-hrf.pth: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/M2UNet_COVD-HRF.pth +.. _m2unet_covd-hrf_ssl.pth: https://www.idiap.ch/software/bob/data/bob/deepdraw/master/M2UNet_COVD-HRF_SSL.pth diff --git a/doc/references.rst b/doc/references.rst index 6d5189cb..71574c60 100644 --- a/doc/references.rst +++ b/doc/references.rst @@ -106,3 +106,98 @@ of precision, recall and F-score, with implication for evaluation**, European conference on Advances in Information Retrieval Research, 2005. https://doi.org/10.1007/978-3-540-31865-1_25 + +.. [JSRT-2000] *J. Shiraishi, S. Katsuragawa, J. Ikezoe, T. Matsumoto, T. + Kobayashi, K. Komatsu, M. Matsui, H. Fujita, Y. Kodera, K. Doi*, + **Development of a digital image database for chest radiographs with and + without a lung nodule: Receiver operating characteristic analysis of + radiologists’ detection of pulmonary nodules.**, American Journal of + Roentgenology. 2000. https://pubmed.ncbi.nlm.nih.gov/10628457 + +.. [CXR8-2017] *Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, + Mohammadhadi Bagheri, Ronald Summers*, **ChestX-ray8: Hospital-scale Chest + X-ray Database and Benchmarks on Weakly-Supervised Classification and + Localization of Common Thorax Diseases.**, IEEE CVPR, pp. 3462-3471, 2017. + https://arxiv.org/abs/1705.02315 + +.. [GAAL-2020] *G. Gaál, B. Maga, A. Lukács*, **Attention U-Net Based + Adversarial Architectures for Chest X-ray Lung Segmentation.**, 2020. + https://arxiv.org/abs/2003.10304v1 + +.. [DRISHTIGS1-2014] *J. Sivaswamy, S. R. Krishnadas, G. Datt Joshi, M. Jain and + A. U. Syed Tabish*, **Drishti-GS: Retinal image dataset for optic nerve + head (ONH) segmentation**, 2014 IEEE 11th International Symposium on + Biomedical Imaging (ISBI), Beijing, 2014, pp. 53-56. + https://doi.org/10.1109/ISBI.2014.6867807 + +.. [DRIVE-2004] *J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever and B. + van Ginneken*, **Ridge-based vessel segmentation in color images of the + retina**, in IEEE Transactions on Medical Imaging, vol. 23, no. 4, pp. + 501-509, April 2004. https://doi.org/10.1109/TMI.2004.825627 + +.. [ORLANDO-2017] *J. I. Orlando, E. Prokofyeva and M. B. Blaschko*, **A + Discriminatively Trained Fully Connected Conditional Random Field Model for + Blood Vessel Segmentation in Fundus Images**, in IEEE Transactions on + Biomedical Engineering, vol. 64, no. 1, pp. 16-27, Jan. 2017. + https://doi.org/10.1109/TBME.2016.2535311 + +.. [MEYER-2017] *M. I. Meyer, P. Costa, A. Galdran, A. M. Mendonça, and A. + Campilho*, **A Deep Neural Network for Vessel Segmentation of Scanning Laser + Ophthalmoscopy Images**, in Image Analysis and Recognition, vol. 10317, F. + Karray, A. Campilho, and F. Cheriet, Eds. Cham: Springer International + Publishing, 2017, pp. 507–515. https://doi.org/10.1007/978-3-319-59876-5_56 + +.. [REFUGE-2018] https://refuge.grand-challenge.org/Details/ + +.. [CHASEDB1-2012] *M. M. Fraz et al.*, **An Ensemble Classification-Based + Approach Applied to Retinal Blood Vessel Segmentation**, in IEEE + Transactions on Biomedical Engineering, vol. 59, no. 9, pp. 2538-2548, Sept. + 2012. https://doi.org/10.1109/TBME.2012.2205687 + +.. [DRIONSDB-2008] *Enrique J. Carmona, Mariano Rincón, Julián GarcÃa-Feijoó, José + M. MartÃnez-de-la-Casa*, **Identification of the optic nerve head with + genetic algorithms**, in Artificial Intelligence in Medicine, Volume 43, + Issue 3, pp. 243-259, 2008. http://dx.doi.org/10.1016/j.artmed.2008.04.005 + +.. [HRF-2013] *A. Budai, R. Bock, A. Maier, J. Hornegger, and G. Michelson*, + **Robust Vessel Segmentation in Fundus Images**, in International Journal of + Biomedical Imaging, vol. 2013, p. 11, 2013. + http://dx.doi.org/10.1155/2013/154860 + +.. [IOSTAR-2016] *J. Zhang, B. Dashtbozorg, E. Bekkers, J. P. W. Pluim, R. Duits + and B. M. ter Haar Romeny*, **Robust Retinal Vessel Segmentation via Locally + Adaptive Derivative Frames in Orientation Scores**, in IEEE Transactions on + Medical Imaging, vol. 35, no. 12, pp. 2631-2644, Dec. 2016. + +.. [RIMONER3-2015] *F. Fumero, J. Sigut, S. AlayoÌn, M. GonzaÌlez-HernaÌndez, M. + GonzaÌlez de la Rosa*, **Interactive Tool and Database for Optic Disc and Cup + Segmentation of Stereo and Monocular Retinal Fundus Images**, Conference on + Computer Graphics, Visualization and Computer Vision, 2015. + https://dspace5.zcu.cz/bitstream/11025/29670/1/Fumero.pdf + +.. [SHENZHEN-2014] *S. Jaeger, S. Candemir, S. Antani, Y. X. Wáng, P. X. Lu, G. + Thoma*, **Two public chest X-ray datasets for computer-aided screening of + pulmonary diseases.**, Quantitative imaging in medicine and surgery. 2014. + https://doi:10.3978/j.issn.2223-4292.2014.11.20 + +.. [STARE-2000] *A. D. Hoover, V. Kouznetsova and M. Goldbaum*, **Locating blood + vessels in retinal images by piecewise threshold probing of a matched filter + response**, in IEEE Transactions on Medical Imaging, vol. 19, no. 3, pp. + 203-210, March 2000. https://doi.org/10.1109/42.845178 + +.. [SANDLER-2018] *M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C.h Chen*, + **MobileNetV2: Inverted Residuals and Linear Bottlenecks**, 2018. + https://arxiv.org/abs/1801.04381 + +.. [RONNEBERGER-2015] *O. Ronneberger, P. Fischer, T. Brox*, **U-Net: + Convolutional Networks for Biomedical Image Segmentation**, 2015. + https://arxiv.org/abs/1505.04597 + +.. [DRHAGIS-2017] *S. Holm, G. Russell, V. Nourrit, N. McLoughlin*, **DR HAGIS – A Novel Fundus Image Database for the Automatic Extraction of Retinal Surface Vessels**, + SPIE Journal of Medical Imaging, 2017. + https://doi.org/10.1117/1.jmi.4.1.014503 + +.. [MC-2014] *S. Jaeger, S. Candemir, S. Antani, Y. X. Wáng, P. X. Lu, G. + Thoma*, **Two public chest X-ray datasets for computer-aided screening of + pulmonary diseases.**, Quantitative imaging in medicine and surgery. 2014. + https://doi:10.3978/j.issn.2223-4292.2014.11.20 diff --git a/src/mednet/libs/segmentation/config/data/cxr8/default.py b/src/mednet/libs/segmentation/config/data/cxr8/default.py index 5efe6ac8..ab1a0313 100644 --- a/src/mednet/libs/segmentation/config/data/cxr8/default.py +++ b/src/mednet/libs/segmentation/config/data/cxr8/default.py @@ -1,12 +1,10 @@ # SPDX-FileCopyrightText: Copyright © 2024 Idiap Research Institute <contact@idiap.ch> # # SPDX-License-Identifier: GPL-3.0-or-later -"""CXR8 dataset for Vessel Segmentation (default protocol). +"""CXR8 Dataset (default protocol). -* Split reference: [CXR8-2004]_ -* This configuration resolution: 544 x 544 (center-crop) -* See :py:mod:`deepdraw.data.cxr8` for dataset details -* This dataset offers a second-annotator comparison for the test set only +* Split reference: [GAAL-2020]_ +* Configuration resolution: 256 x 256 """ from mednet.libs.segmentation.config.data.cxr8.datamodule import DataModule diff --git a/src/mednet/libs/segmentation/config/data/drionsdb/expert1.py b/src/mednet/libs/segmentation/config/data/drionsdb/expert1.py index 40ac9797..03a457e0 100644 --- a/src/mednet/libs/segmentation/config/data/drionsdb/expert1.py +++ b/src/mednet/libs/segmentation/config/data/drionsdb/expert1.py @@ -5,7 +5,6 @@ * Configuration resolution: 416 x 608 (after padding) * Split reference: [MANINIS-2016]_ -* See :py:mod:`deepdraw.data.drionsdb` for dataset details """ from mednet.libs.segmentation.config.data.drionsdb.datamodule import DataModule diff --git a/src/mednet/libs/segmentation/config/data/drionsdb/expert2.py b/src/mednet/libs/segmentation/config/data/drionsdb/expert2.py index 9ee9733c..07f44ae5 100644 --- a/src/mednet/libs/segmentation/config/data/drionsdb/expert2.py +++ b/src/mednet/libs/segmentation/config/data/drionsdb/expert2.py @@ -5,7 +5,6 @@ * Configuration resolution: 416 x 608 (after padding) * Split reference: [MANINIS-2016]_ -* See :py:mod:`deepdraw.data.drionsdb` for dataset details """ from mednet.libs.segmentation.config.data.drionsdb.datamodule import DataModule diff --git a/src/mednet/libs/segmentation/config/data/drishtigs1/datamodule.py b/src/mednet/libs/segmentation/config/data/drishtigs1/datamodule.py index bf73162c..f7c2fc7a 100644 --- a/src/mednet/libs/segmentation/config/data/drishtigs1/datamodule.py +++ b/src/mednet/libs/segmentation/config/data/drishtigs1/datamodule.py @@ -105,12 +105,11 @@ class DataModule(CachingDataModule): and notching information. * Reference (including train/test split): [DRISHTIGS1-2014]_ - * Original resolution (height x width): varying (min: 1749 x 2045, max: 1845 x - 2468) + * Original resolution (height x width): varying (min: 1749 x 2045, max: 1845 x2468) * Configuration resolution: 1760 x 2048 (after center cropping) * Protocols ``optic-disc`` and ``optic-cup``: - * Training: 50 - * Test: 51 + * Training: 50 + * Test: 51 Parameters ---------- diff --git a/src/mednet/libs/segmentation/config/data/drishtigs1/optic_cup_all.py b/src/mednet/libs/segmentation/config/data/drishtigs1/optic_cup_all.py index 5dd8ca22..b49d063b 100644 --- a/src/mednet/libs/segmentation/config/data/drishtigs1/optic_cup_all.py +++ b/src/mednet/libs/segmentation/config/data/drishtigs1/optic_cup_all.py @@ -5,7 +5,6 @@ * Configuration resolution: 1760 x 2048 (after center cropping) * Reference (includes split): [DRISHTIGS1-2014]_ -* See :py:mod:`deepdraw.data.drishtigs1` for dataset details """ from mednet.libs.segmentation.config.data.drishtigs1.datamodule import DataModule diff --git a/src/mednet/libs/segmentation/config/data/drishtigs1/optic_cup_any.py b/src/mednet/libs/segmentation/config/data/drishtigs1/optic_cup_any.py index 47c56927..a980f8ab 100644 --- a/src/mednet/libs/segmentation/config/data/drishtigs1/optic_cup_any.py +++ b/src/mednet/libs/segmentation/config/data/drishtigs1/optic_cup_any.py @@ -5,7 +5,6 @@ * Configuration resolution: 1760 x 2048 (after center cropping) * Reference (includes split): [DRISHTIGS1-2014]_ -* See :py:mod:`deepdraw.data.drishtigs1` for dataset details """ from mednet.libs.segmentation.config.data.drishtigs1.datamodule import DataModule diff --git a/src/mednet/libs/segmentation/config/data/drishtigs1/optic_disc_all.py b/src/mednet/libs/segmentation/config/data/drishtigs1/optic_disc_all.py index 6a592c62..b02c274c 100644 --- a/src/mednet/libs/segmentation/config/data/drishtigs1/optic_disc_all.py +++ b/src/mednet/libs/segmentation/config/data/drishtigs1/optic_disc_all.py @@ -5,7 +5,6 @@ * Configuration resolution: 1760 x 2048 (after center cropping) * Reference (includes split): [DRISHTIGS1-2014]_ -* See :py:mod:`deepdraw.data.drishtigs1` for dataset details """ from mednet.libs.segmentation.config.data.drishtigs1.datamodule import DataModule diff --git a/src/mednet/libs/segmentation/config/data/drishtigs1/optic_disc_any.py b/src/mednet/libs/segmentation/config/data/drishtigs1/optic_disc_any.py index 5c8e840e..6a5de2e2 100644 --- a/src/mednet/libs/segmentation/config/data/drishtigs1/optic_disc_any.py +++ b/src/mednet/libs/segmentation/config/data/drishtigs1/optic_disc_any.py @@ -5,7 +5,6 @@ * Configuration resolution: 1760 x 2048 (after center cropping) * Reference (includes split): [DRISHTIGS1-2014]_ -* See :py:mod:`deepdraw.data.drishtigs1` for dataset details """ from mednet.libs.segmentation.config.data.drishtigs1.datamodule import DataModule diff --git a/src/mednet/libs/segmentation/config/data/drive/default.py b/src/mednet/libs/segmentation/config/data/drive/default.py index 4fcaa0c6..0e1cc0b2 100644 --- a/src/mednet/libs/segmentation/config/data/drive/default.py +++ b/src/mednet/libs/segmentation/config/data/drive/default.py @@ -5,7 +5,6 @@ * Split reference: [DRIVE-2004]_ * This configuration resolution: 544 x 544 (center-crop) -* See :py:mod:`deepdraw.data.drive` for dataset details * This dataset offers a second-annotator comparison for the test set only """ diff --git a/src/mednet/libs/segmentation/config/data/drive/drive_2nd.py b/src/mednet/libs/segmentation/config/data/drive/drive_2nd.py index 3c0ac007..aa130b4c 100644 --- a/src/mednet/libs/segmentation/config/data/drive/drive_2nd.py +++ b/src/mednet/libs/segmentation/config/data/drive/drive_2nd.py @@ -5,7 +5,6 @@ * Split reference: [DRIVE-2004]_ * This configuration resolution: 544 x 544 (center-crop) -* See :py:mod:`deepdraw.data.drive` for dataset details * This dataset offers a second-annotator comparison for the test set only """ diff --git a/src/mednet/libs/segmentation/config/data/hrf/default.py b/src/mednet/libs/segmentation/config/data/hrf/default.py index c20e3c2d..4b0c97fe 100644 --- a/src/mednet/libs/segmentation/config/data/hrf/default.py +++ b/src/mednet/libs/segmentation/config/data/hrf/default.py @@ -5,7 +5,6 @@ * Split reference: [ORLANDO-2017]_ * Configuration resolution: 1168 x 1648 (about half full HRF resolution) -* See :py:mod:`deepdraw.data.hrf` for dataset details """ from mednet.libs.segmentation.config.data.hrf.datamodule import ( diff --git a/src/mednet/libs/segmentation/config/data/iostar/optic_disc.py b/src/mednet/libs/segmentation/config/data/iostar/optic_disc.py index f49d59c2..2b548bd9 100644 --- a/src/mednet/libs/segmentation/config/data/iostar/optic_disc.py +++ b/src/mednet/libs/segmentation/config/data/iostar/optic_disc.py @@ -1,6 +1,13 @@ # SPDX-FileCopyrightText: Copyright © 2024 Idiap Research Institute <contact@idiap.ch> # # SPDX-License-Identifier: GPL-3.0-or-later + +"""IOSTAR dataset for Optic Disc Segmentation (default protocol). + +* Split reference: [MEYER-2017]_ +* Configuration resolution: 1024 x 1024 (original resolution) +""" + from mednet.libs.segmentation.config.data.iostar.datamodule import DataModule datamodule = DataModule("optic-disc.json") diff --git a/src/mednet/libs/segmentation/config/data/iostar/vessel.py b/src/mednet/libs/segmentation/config/data/iostar/vessel.py index 78bdb1c9..183207d6 100644 --- a/src/mednet/libs/segmentation/config/data/iostar/vessel.py +++ b/src/mednet/libs/segmentation/config/data/iostar/vessel.py @@ -1,6 +1,13 @@ # SPDX-FileCopyrightText: Copyright © 2024 Idiap Research Institute <contact@idiap.ch> # # SPDX-License-Identifier: GPL-3.0-or-later + +"""IOSTAR dataset for Vessel Segmentation (default protocol). + +* Split reference: [MEYER-2017]_ +* Configuration resolution: 1024 x 1024 (original resolution) +""" + from mednet.libs.segmentation.config.data.iostar.datamodule import DataModule datamodule = DataModule("vessel.json") diff --git a/src/mednet/libs/segmentation/config/data/jsrt/datamodule.py b/src/mednet/libs/segmentation/config/data/jsrt/datamodule.py index ab6aa4c1..58f6a8cc 100644 --- a/src/mednet/libs/segmentation/config/data/jsrt/datamodule.py +++ b/src/mednet/libs/segmentation/config/data/jsrt/datamodule.py @@ -41,10 +41,10 @@ class SegmentationRawDataLoader(_SegmentationRawDataLoader): def load_pil_raw_12bit_jsrt(self, path: pathlib.Path) -> PIL.Image.Image: """Load a raw 16-bit sample data. - This method was designed to handle the raw images from the JSRT_ dataset. + This method was designed to handle the raw images from the JSRT dataset. It reads the data file and applies a simple histogram equalization to the 8-bit representation of the image to obtain something along the lines of - the PNG (unofficial) version distributed at `JSRT-Kaggle`_. + the PNG (unofficial) version distributed at `JSRT-Kaggle`. Parameters ---------- diff --git a/src/mednet/libs/segmentation/config/data/jsrt/default.py b/src/mednet/libs/segmentation/config/data/jsrt/default.py index b4a552fa..51c012fd 100644 --- a/src/mednet/libs/segmentation/config/data/jsrt/default.py +++ b/src/mednet/libs/segmentation/config/data/jsrt/default.py @@ -6,7 +6,6 @@ * Split reference: [GAAL-2020]_ * Configuration resolution: 256 x 256 -* See :py:mod:`deepdraw.data.jsrt` for dataset details """ from mednet.libs.segmentation.config.data.jsrt.datamodule import ( diff --git a/src/mednet/libs/segmentation/config/data/montgomery/default.py b/src/mednet/libs/segmentation/config/data/montgomery/default.py index 28ea078d..33e21d79 100644 --- a/src/mednet/libs/segmentation/config/data/montgomery/default.py +++ b/src/mednet/libs/segmentation/config/data/montgomery/default.py @@ -1,21 +1,11 @@ # SPDX-FileCopyrightText: Copyright © 2024 Idiap Research Institute <contact@idiap.ch> # # SPDX-License-Identifier: GPL-3.0-or-later -"""Montgomery County dataset for Lung Segmentation. -The database includes 58 cases with manifestation of tuberculosis, and 80 -normal cases. It contains a total of 138 resolution of 4020 x 4892, or -4892 x 4020. One set of ground-truth lung annotations is available. +"""Montgomery County dataset for Lung Segmentation (default protocol). -* Reference: [MC-2014]_ -* Original resolution (height x width): 4020 x 4892, or 4892 x 4020 -* Configuration resolution: 512 x 512 (after rescaling) * Split reference: [GAAL-2020]_ -* Protocol ``default``: - - * Training samples: 96 (including labels) - * Validation samples: 14 (including labels) - * Test samples: 28 (including labels) +* Configuration resolution: 256 x 256 """ from mednet.libs.segmentation.config.data.montgomery.datamodule import ( diff --git a/src/mednet/libs/segmentation/config/data/refuge/cup.py b/src/mednet/libs/segmentation/config/data/refuge/cup.py index 6b51b66c..a4514b58 100644 --- a/src/mednet/libs/segmentation/config/data/refuge/cup.py +++ b/src/mednet/libs/segmentation/config/data/refuge/cup.py @@ -5,7 +5,6 @@ * Configuration resolution: 1632 x 1632 (after resizing and padding) * Reference (including split): [REFUGE-2018]_ -* See :py:mod:`deepdraw.data.refuge` for dataset details """ from mednet.libs.segmentation.config.data.refuge.datamodule import DataModule diff --git a/src/mednet/libs/segmentation/config/data/refuge/disc.py b/src/mednet/libs/segmentation/config/data/refuge/disc.py index 54062406..c06ea99c 100644 --- a/src/mednet/libs/segmentation/config/data/refuge/disc.py +++ b/src/mednet/libs/segmentation/config/data/refuge/disc.py @@ -5,7 +5,6 @@ * Configuration resolution: 1632 x 1632 (after resizing and padding) * Reference (including split): [REFUGE-2018]_ -* See :py:mod:`deepdraw.data.refuge` for dataset details """ from mednet.libs.segmentation.config.data.refuge.datamodule import DataModule diff --git a/src/mednet/libs/segmentation/config/data/rimoner3/cup_exp1.py b/src/mednet/libs/segmentation/config/data/rimoner3/cup_exp1.py index 1b1a112f..79208027 100644 --- a/src/mednet/libs/segmentation/config/data/rimoner3/cup_exp1.py +++ b/src/mednet/libs/segmentation/config/data/rimoner3/cup_exp1.py @@ -5,7 +5,6 @@ * Configuration resolution: 1440 x 1088 (after padding) * Split reference: [MANINIS-2016]_ -* See :py:mod:`deepdraw.data.rimoner3` for dataset details """ from mednet.libs.segmentation.config.data.rimoner3.datamodule import DataModule diff --git a/src/mednet/libs/segmentation/config/data/rimoner3/cup_exp2.py b/src/mednet/libs/segmentation/config/data/rimoner3/cup_exp2.py index 1b1a112f..79208027 100644 --- a/src/mednet/libs/segmentation/config/data/rimoner3/cup_exp2.py +++ b/src/mednet/libs/segmentation/config/data/rimoner3/cup_exp2.py @@ -5,7 +5,6 @@ * Configuration resolution: 1440 x 1088 (after padding) * Split reference: [MANINIS-2016]_ -* See :py:mod:`deepdraw.data.rimoner3` for dataset details """ from mednet.libs.segmentation.config.data.rimoner3.datamodule import DataModule diff --git a/src/mednet/libs/segmentation/config/data/rimoner3/datamodule.py b/src/mednet/libs/segmentation/config/data/rimoner3/datamodule.py index c0ff1537..c5be56fe 100644 --- a/src/mednet/libs/segmentation/config/data/rimoner3/datamodule.py +++ b/src/mednet/libs/segmentation/config/data/rimoner3/datamodule.py @@ -96,8 +96,7 @@ class DataModule(CachingDataModule): * Reference: [RIMONER3-2015]_ * Original resolution (height x width): 1424 x 1072 * Split reference: [MANINIS-2016]_ - * Protocols ``optic-disc-exp1``, ``optic-cup-exp1``, ``optic-disc-exp2``, - ``optic-cup-exp2``, ``optic-disc-avg`` and ``optic-cup-avg``: + * Protocols ``optic-disc-exp1``, ``optic-cup-exp1``, ``optic-disc-exp2``, ``optic-cup-exp2``, ``optic-disc-avg`` and ``optic-cup-avg``: * Training: 99 * Test: 60 diff --git a/src/mednet/libs/segmentation/config/data/rimoner3/disc_exp1.py b/src/mednet/libs/segmentation/config/data/rimoner3/disc_exp1.py index a45867f9..203f8620 100644 --- a/src/mednet/libs/segmentation/config/data/rimoner3/disc_exp1.py +++ b/src/mednet/libs/segmentation/config/data/rimoner3/disc_exp1.py @@ -5,7 +5,6 @@ * Configuration resolution: 1440 x 1088 (after padding) * Split reference: [MANINIS-2016]_ -* See :py:mod:`deepdraw.data.rimoner3` for dataset details """ from mednet.libs.segmentation.config.data.rimoner3.datamodule import DataModule diff --git a/src/mednet/libs/segmentation/config/data/rimoner3/disc_exp2.py b/src/mednet/libs/segmentation/config/data/rimoner3/disc_exp2.py index d2d741eb..db0c41b3 100644 --- a/src/mednet/libs/segmentation/config/data/rimoner3/disc_exp2.py +++ b/src/mednet/libs/segmentation/config/data/rimoner3/disc_exp2.py @@ -5,7 +5,6 @@ * Configuration resolution: 1440 x 1088 (after padding) * Split reference: [MANINIS-2016]_ -* See :py:mod:`deepdraw.data.rimoner3` for dataset details """ from mednet.libs.segmentation.config.data.rimoner3.datamodule import DataModule diff --git a/src/mednet/libs/segmentation/config/data/shenzhen/default.py b/src/mednet/libs/segmentation/config/data/shenzhen/default.py index 7db4f044..4ef32734 100644 --- a/src/mednet/libs/segmentation/config/data/shenzhen/default.py +++ b/src/mednet/libs/segmentation/config/data/shenzhen/default.py @@ -5,7 +5,6 @@ * Split reference: [GAAL-2020]_ * Configuration resolution: 256 x 256 -* See :py:mod:`deepdraw.data.shenzhen` for dataset details """ from mednet.libs.segmentation.config.data.shenzhen.datamodule import DataModule diff --git a/src/mednet/libs/segmentation/config/data/stare/ah.py b/src/mednet/libs/segmentation/config/data/stare/ah.py index cf6051a1..811d0a0f 100644 --- a/src/mednet/libs/segmentation/config/data/stare/ah.py +++ b/src/mednet/libs/segmentation/config/data/stare/ah.py @@ -1,6 +1,14 @@ # SPDX-FileCopyrightText: Copyright © 2024 Idiap Research Institute <contact@idiap.ch> # # SPDX-License-Identifier: GPL-3.0-or-later + +"""STARE dataset for Vessel Segmentation (annotator AH). + +* Configuration resolution: 704 x 608 (after padding) +* Split reference: [MANINIS-2016]_ +* This dataset offers a second-annotator comparison (using protocol "vk") +""" + from mednet.libs.segmentation.config.data.stare.datamodule import DataModule datamodule = DataModule("ah.json") diff --git a/src/mednet/libs/segmentation/config/data/stare/vk.py b/src/mednet/libs/segmentation/config/data/stare/vk.py index f4c88abc..5a871186 100644 --- a/src/mednet/libs/segmentation/config/data/stare/vk.py +++ b/src/mednet/libs/segmentation/config/data/stare/vk.py @@ -1,6 +1,14 @@ # SPDX-FileCopyrightText: Copyright © 2024 Idiap Research Institute <contact@idiap.ch> # # SPDX-License-Identifier: GPL-3.0-or-later + +"""STARE dataset for Vessel Segmentation (annotator VK). + +* Configuration resolution: 704 x 608 (after padding) +* Split reference: [MANINIS-2016]_ +* This dataset offers a second-annotator comparison (using protocol "ah") +""" + from mednet.libs.segmentation.config.data.stare.datamodule import DataModule datamodule = DataModule("vk.json") diff --git a/src/mednet/libs/segmentation/scripts/evaluate.py b/src/mednet/libs/segmentation/scripts/evaluate.py index 0fdddc9a..a76b0081 100644 --- a/src/mednet/libs/segmentation/scripts/evaluate.py +++ b/src/mednet/libs/segmentation/scripts/evaluate.py @@ -28,7 +28,7 @@ from mednet.libs.segmentation.engine.evaluator import run .. code:: sh - $ deepdraw evaluate -vv drive --predictions-folder=path/to/predictions --output-folder=path/to/results + $ mednet segmentation evaluate -vv drive --predictions-folder=path/to/predictions --output-folder=path/to/results \b 2. To run evaluation on a folder with your own images and annotations, you @@ -40,9 +40,9 @@ from mednet.libs.segmentation.engine.evaluator import run .. code:: sh - $ deepdraw config copy csv-dataset-example mydataset.py + $ mednet segmentation config copy csv-dataset-example mydataset.py # modify "mydataset.py" to your liking - $ deepdraw evaluate -vv mydataset.py --predictions-folder=path/to/predictions --output-folder=path/to/results + $ mednet segmentation evaluate -vv mydataset.py --predictions-folder=path/to/predictions --output-folder=path/to/results """, ) @click.option( -- GitLab