diff --git a/tests/test_cli.py b/tests/test_cli.py index 1ac304a17a4e1d89ff0014c545beda9f69417e04..3382c88f4022e15378e8a830e40ef829667b975f 100644 --- a/tests/test_cli.py +++ b/tests/test_cli.py @@ -530,110 +530,3 @@ def test_experiment(temporary_basedir): ) == 58 ) - - -# This script does not work anymore, either fix or remove the script + this test -# def test_evaluatevis(temporary_basedir): -# import pandas as pd - -# from mednet.scripts.evaluatevis import evaluatevis - -# runner = CliRunner() - -# # Create a sample directory structure and CSV files -# input_folder = temporary_basedir / "camutils_cli" / "gradcam" -# input_folder.mkdir(parents=True, exist_ok=True) -# class1_dir = input_folder / "class1" -# class1_dir.mkdir(parents=True, exist_ok=True) -# class2_dir = input_folder / "class2" -# class2_dir.mkdir(parents=True, exist_ok=True) - -# data = { -# "MoRF": [1, 2, 3], -# "LeRF": [2, 4, 6], -# "Combined Score ((LeRF-MoRF) / 2)": [1.5, 3, 4.5], -# "IoU": [1, 2, 3], -# "IoDA": [2, 4, 6], -# "propEnergy": [1.5, 3, 4.5], -# "ASF": [1, 2, 3], -# } -# df = pd.DataFrame(data) -# df.to_csv(class1_dir / "file1.csv", index=False) -# df.to_csv(class2_dir / "file1.csv", index=False) -# df.to_csv(class1_dir / "file2.csv", index=False) -# df.to_csv(class2_dir / "file2.csv", index=False) - -# result = runner.invoke(evaluatevis, ["-vv", "-i", str(input_folder)]) - -# assert result.exit_code == 0 - -# assert (input_folder / "file1_summary.csv").exists() -# assert (input_folder / "file2_summary.csv").exists() - - -# Not enough RAM available to do this test -# @pytest.mark.skip_if_rc_var_not_set("datadir.montgomery") -# def test_predict_densenetrs_montgomery(temporary_basedir, datadir): - -# from mednet.scripts.predict import predict - -# runner = CliRunner() - -# with stdout_logging() as buf: - -# output_folder = str(temporary_basedir / "predictions") -# result = runner.invoke( -# predict, -# [ -# "densenet_rs", -# "montgomery_f0_rgb", -# "-vv", -# "--batch-size=1", -# f"--weight={str(datadir / 'lfs' / 'models' / 'densenetrs.pth')}", -# f"--output-folder={output_folder}", -# "--grad-cams" -# ], -# ) -# _assert_exit_0(result) - -# # check predictions are there -# predictions_file1 = os.path.join(output_folder, "train/predictions.csv") -# predictions_file2 = os.path.join(output_folder, "validation/predictions.csv") -# predictions_file3 = os.path.join(output_folder, "test/predictions.csv") -# assert os.path.exists(predictions_file1) -# assert os.path.exists(predictions_file2) -# assert os.path.exists(predictions_file3) -# # check some grad cams are there -# cam1 = os.path.join(output_folder, "train/cams/MCUCXR_0002_0_cam.png") -# cam2 = os.path.join(output_folder, "train/cams/MCUCXR_0126_1_cam.png") -# cam3 = os.path.join(output_folder, "train/cams/MCUCXR_0275_1_cam.png") -# cam4 = os.path.join(output_folder, "validation/cams/MCUCXR_0399_1_cam.png") -# cam5 = os.path.join(output_folder, "validation/cams/MCUCXR_0113_1_cam.png") -# cam6 = os.path.join(output_folder, "validation/cams/MCUCXR_0013_0_cam.png") -# cam7 = os.path.join(output_folder, "test/cams/MCUCXR_0027_0_cam.png") -# cam8 = os.path.join(output_folder, "test/cams/MCUCXR_0094_0_cam.png") -# cam9 = os.path.join(output_folder, "test/cams/MCUCXR_0375_1_cam.png") -# assert os.path.exists(cam1) -# assert os.path.exists(cam2) -# assert os.path.exists(cam3) -# assert os.path.exists(cam4) -# assert os.path.exists(cam5) -# assert os.path.exists(cam6) -# assert os.path.exists(cam7) -# assert os.path.exists(cam8) -# assert os.path.exists(cam9) - -# keywords = { -# r"^Loading checkpoint from.*$": 1, -# r"^Total time:.*$": 3, -# r"^Grad cams folder:.*$": 3, -# } -# buf.seek(0) -# logging_output = buf.read() - -# for k, v in keywords.items(): -# assert _str_counter(k, logging_output) == v, ( -# f"Count for string '{k}' appeared " -# f"({_str_counter(k, logging_output)}) " -# f"instead of the expected {v}:\nOutput:\n{logging_output}" -# )