From 04351e194cf5817866dc0320cc3b417bf0f8baef Mon Sep 17 00:00:00 2001 From: dcarron <daniel.carron@idiap.ch> Date: Mon, 5 Jun 2023 16:18:05 +0200 Subject: [PATCH] Moved mc_ch_in configs to data --- pyproject.toml | 44 +++---- .../configs/datasets/mc_ch_in/__init__.py | 117 ------------------ .../configs/datasets/mc_ch_in/default.py | 9 -- .../configs/datasets/mc_ch_in/fold_0.py | 10 -- .../configs/datasets/mc_ch_in/fold_0_rgb.py | 10 -- .../configs/datasets/mc_ch_in/fold_1.py | 10 -- .../configs/datasets/mc_ch_in/fold_1_rgb.py | 10 -- .../configs/datasets/mc_ch_in/fold_2.py | 10 -- .../configs/datasets/mc_ch_in/fold_2_rgb.py | 10 -- .../configs/datasets/mc_ch_in/fold_3.py | 10 -- .../configs/datasets/mc_ch_in/fold_3_rgb.py | 10 -- .../configs/datasets/mc_ch_in/fold_4.py | 10 -- .../configs/datasets/mc_ch_in/fold_4_rgb.py | 10 -- .../configs/datasets/mc_ch_in/fold_5.py | 10 -- .../configs/datasets/mc_ch_in/fold_5_rgb.py | 10 -- .../configs/datasets/mc_ch_in/fold_6.py | 10 -- .../configs/datasets/mc_ch_in/fold_6_rgb.py | 10 -- .../configs/datasets/mc_ch_in/fold_7.py | 10 -- .../configs/datasets/mc_ch_in/fold_7_rgb.py | 10 -- .../configs/datasets/mc_ch_in/fold_8.py | 10 -- .../configs/datasets/mc_ch_in/fold_8_rgb.py | 10 -- .../configs/datasets/mc_ch_in/fold_9.py | 10 -- .../configs/datasets/mc_ch_in/fold_9_rgb.py | 10 -- src/ptbench/configs/datasets/mc_ch_in/rgb.py | 10 -- src/ptbench/data/mc_ch_in/__init__.py | 3 + src/ptbench/data/mc_ch_in/default.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/fold_0.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/fold_0_rgb.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/fold_1.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/fold_1_rgb.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/fold_2.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/fold_2_rgb.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/fold_3.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/fold_3_rgb.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/fold_4.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/fold_4_rgb.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/fold_5.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/fold_5_rgb.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/fold_6.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/fold_6_rgb.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/fold_7.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/fold_7_rgb.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/fold_8.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/fold_8_rgb.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/fold_9.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/fold_9_rgb.py | 81 ++++++++++++ src/ptbench/data/mc_ch_in/rgb.py | 81 ++++++++++++ 47 files changed, 1807 insertions(+), 358 deletions(-) delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/__init__.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/default.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/fold_0.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/fold_0_rgb.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/fold_1.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/fold_1_rgb.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/fold_2.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/fold_2_rgb.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/fold_3.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/fold_3_rgb.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/fold_4.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/fold_4_rgb.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/fold_5.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/fold_5_rgb.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/fold_6.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/fold_6_rgb.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/fold_7.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/fold_7_rgb.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/fold_8.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/fold_8_rgb.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/fold_9.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/fold_9_rgb.py delete mode 100644 src/ptbench/configs/datasets/mc_ch_in/rgb.py create mode 100644 src/ptbench/data/mc_ch_in/__init__.py create mode 100644 src/ptbench/data/mc_ch_in/default.py create mode 100644 src/ptbench/data/mc_ch_in/fold_0.py create mode 100644 src/ptbench/data/mc_ch_in/fold_0_rgb.py create mode 100644 src/ptbench/data/mc_ch_in/fold_1.py create mode 100644 src/ptbench/data/mc_ch_in/fold_1_rgb.py create mode 100644 src/ptbench/data/mc_ch_in/fold_2.py create mode 100644 src/ptbench/data/mc_ch_in/fold_2_rgb.py create mode 100644 src/ptbench/data/mc_ch_in/fold_3.py create mode 100644 src/ptbench/data/mc_ch_in/fold_3_rgb.py create mode 100644 src/ptbench/data/mc_ch_in/fold_4.py create mode 100644 src/ptbench/data/mc_ch_in/fold_4_rgb.py create mode 100644 src/ptbench/data/mc_ch_in/fold_5.py create mode 100644 src/ptbench/data/mc_ch_in/fold_5_rgb.py create mode 100644 src/ptbench/data/mc_ch_in/fold_6.py create mode 100644 src/ptbench/data/mc_ch_in/fold_6_rgb.py create mode 100644 src/ptbench/data/mc_ch_in/fold_7.py create mode 100644 src/ptbench/data/mc_ch_in/fold_7_rgb.py create mode 100644 src/ptbench/data/mc_ch_in/fold_8.py create mode 100644 src/ptbench/data/mc_ch_in/fold_8_rgb.py create mode 100644 src/ptbench/data/mc_ch_in/fold_9.py create mode 100644 src/ptbench/data/mc_ch_in/fold_9_rgb.py create mode 100644 src/ptbench/data/mc_ch_in/rgb.py diff --git a/pyproject.toml b/pyproject.toml index 67211c83..b936dddb 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -293,28 +293,28 @@ mc_ch_rs_f7 = "ptbench.configs.datasets.mc_ch_RS.fold_7" mc_ch_rs_f8 = "ptbench.configs.datasets.mc_ch_RS.fold_8" mc_ch_rs_f9 = "ptbench.configs.datasets.mc_ch_RS.fold_9" # montgomery-shenzhen-indian aggregated dataset -mc_ch_in = "ptbench.configs.datasets.mc_ch_in.default" -mc_ch_in_rgb = "ptbench.configs.datasets.mc_ch_in.rgb" -mc_ch_in_f0 = "ptbench.configs.datasets.mc_ch_in.fold_0" -mc_ch_in_f1 = "ptbench.configs.datasets.mc_ch_in.fold_1" -mc_ch_in_f2 = "ptbench.configs.datasets.mc_ch_in.fold_2" -mc_ch_in_f3 = "ptbench.configs.datasets.mc_ch_in.fold_3" -mc_ch_in_f4 = "ptbench.configs.datasets.mc_ch_in.fold_4" -mc_ch_in_f5 = "ptbench.configs.datasets.mc_ch_in.fold_5" -mc_ch_in_f6 = "ptbench.configs.datasets.mc_ch_in.fold_6" -mc_ch_in_f7 = "ptbench.configs.datasets.mc_ch_in.fold_7" -mc_ch_in_f8 = "ptbench.configs.datasets.mc_ch_in.fold_8" -mc_ch_in_f9 = "ptbench.configs.datasets.mc_ch_in.fold_9" -mc_ch_in_f0_rgb = "ptbench.configs.datasets.mc_ch_in.fold_0_rgb" -mc_ch_in_f1_rgb = "ptbench.configs.datasets.mc_ch_in.fold_1_rgb" -mc_ch_in_f2_rgb = "ptbench.configs.datasets.mc_ch_in.fold_2_rgb" -mc_ch_in_f3_rgb = "ptbench.configs.datasets.mc_ch_in.fold_3_rgb" -mc_ch_in_f4_rgb = "ptbench.configs.datasets.mc_ch_in.fold_4_rgb" -mc_ch_in_f5_rgb = "ptbench.configs.datasets.mc_ch_in.fold_5_rgb" -mc_ch_in_f6_rgb = "ptbench.configs.datasets.mc_ch_in.fold_6_rgb" -mc_ch_in_f7_rgb = "ptbench.configs.datasets.mc_ch_in.fold_7_rgb" -mc_ch_in_f8_rgb = "ptbench.configs.datasets.mc_ch_in.fold_8_rgb" -mc_ch_in_f9_rgb = "ptbench.configs.datasets.mc_ch_in.fold_9_rgb" +mc_ch_in = "ptbench.data.mc_ch_in.default" +mc_ch_in_rgb = "ptbench.data.mc_ch_in.rgb" +mc_ch_in_f0 = "ptbench.data.mc_ch_in.fold_0" +mc_ch_in_f1 = "ptbench.data.mc_ch_in.fold_1" +mc_ch_in_f2 = "ptbench.data.mc_ch_in.fold_2" +mc_ch_in_f3 = "ptbench.data.mc_ch_in.fold_3" +mc_ch_in_f4 = "ptbench.data.mc_ch_in.fold_4" +mc_ch_in_f5 = "ptbench.data.mc_ch_in.fold_5" +mc_ch_in_f6 = "ptbench.data.mc_ch_in.fold_6" +mc_ch_in_f7 = "ptbench.data.mc_ch_in.fold_7" +mc_ch_in_f8 = "ptbench.data.mc_ch_in.fold_8" +mc_ch_in_f9 = "ptbench.data.mc_ch_in.fold_9" +mc_ch_in_f0_rgb = "ptbench.data.mc_ch_in.fold_0_rgb" +mc_ch_in_f1_rgb = "ptbench.data.mc_ch_in.fold_1_rgb" +mc_ch_in_f2_rgb = "ptbench.data.mc_ch_in.fold_2_rgb" +mc_ch_in_f3_rgb = "ptbench.data.mc_ch_in.fold_3_rgb" +mc_ch_in_f4_rgb = "ptbench.data.mc_ch_in.fold_4_rgb" +mc_ch_in_f5_rgb = "ptbench.data.mc_ch_in.fold_5_rgb" +mc_ch_in_f6_rgb = "ptbench.data.mc_ch_in.fold_6_rgb" +mc_ch_in_f7_rgb = "ptbench.data.mc_ch_in.fold_7_rgb" +mc_ch_in_f8_rgb = "ptbench.data.mc_ch_in.fold_8_rgb" +mc_ch_in_f9_rgb = "ptbench.data.mc_ch_in.fold_9_rgb" # extended montgomery-shenzhen-indian aggregated dataset # (with radiological signs) mc_ch_in_rs = "ptbench.configs.datasets.mc_ch_in_RS.default" diff --git a/src/ptbench/configs/datasets/mc_ch_in/__init__.py b/src/ptbench/configs/datasets/mc_ch_in/__init__.py deleted file mode 100644 index 41023bb3..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/__init__.py +++ /dev/null @@ -1,117 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -from torch.utils.data.dataset import ConcatDataset - - -def _maker(protocol): - if protocol == "default": - from ..indian import default as indian - from ..montgomery import default as mc - from ..shenzhen import default as ch - elif protocol == "rgb": - from ..indian import rgb as indian - from ..montgomery import rgb as mc - from ..shenzhen import rgb as ch - elif protocol == "fold_0": - from ..indian import fold_0 as indian - from ..montgomery import fold_0 as mc - from ..shenzhen import fold_0 as ch - elif protocol == "fold_1": - from ..indian import fold_1 as indian - from ..montgomery import fold_1 as mc - from ..shenzhen import fold_1 as ch - elif protocol == "fold_2": - from ..indian import fold_2 as indian - from ..montgomery import fold_2 as mc - from ..shenzhen import fold_2 as ch - elif protocol == "fold_3": - from ..indian import fold_3 as indian - from ..montgomery import fold_3 as mc - from ..shenzhen import fold_3 as ch - elif protocol == "fold_4": - from ..indian import fold_4 as indian - from ..montgomery import fold_4 as mc - from ..shenzhen import fold_4 as ch - elif protocol == "fold_5": - from ..indian import fold_5 as indian - from ..montgomery import fold_5 as mc - from ..shenzhen import fold_5 as ch - elif protocol == "fold_6": - from ..indian import fold_6 as indian - from ..montgomery import fold_6 as mc - from ..shenzhen import fold_6 as ch - elif protocol == "fold_7": - from ..indian import fold_7 as indian - from ..montgomery import fold_7 as mc - from ..shenzhen import fold_7 as ch - elif protocol == "fold_8": - from ..indian import fold_8 as indian - from ..montgomery import fold_8 as mc - from ..shenzhen import fold_8 as ch - elif protocol == "fold_9": - from ..indian import fold_9 as indian - from ..montgomery import fold_9 as mc - from ..shenzhen import fold_9 as ch - elif protocol == "fold_0_rgb": - from ..indian import fold_0_rgb as indian - from ..montgomery import fold_0_rgb as mc - from ..shenzhen import fold_0_rgb as ch - elif protocol == "fold_1_rgb": - from ..indian import fold_1_rgb as indian - from ..montgomery import fold_1_rgb as mc - from ..shenzhen import fold_1_rgb as ch - elif protocol == "fold_2_rgb": - from ..indian import fold_2_rgb as indian - from ..montgomery import fold_2_rgb as mc - from ..shenzhen import fold_2_rgb as ch - elif protocol == "fold_3_rgb": - from ..indian import fold_3_rgb as indian - from ..montgomery import fold_3_rgb as mc - from ..shenzhen import fold_3_rgb as ch - elif protocol == "fold_4_rgb": - from ..indian import fold_4_rgb as indian - from ..montgomery import fold_4_rgb as mc - from ..shenzhen import fold_4_rgb as ch - elif protocol == "fold_5_rgb": - from ..indian import fold_5_rgb as indian - from ..montgomery import fold_5_rgb as mc - from ..shenzhen import fold_5_rgb as ch - elif protocol == "fold_6_rgb": - from ..indian import fold_6_rgb as indian - from ..montgomery import fold_6_rgb as mc - from ..shenzhen import fold_6_rgb as ch - elif protocol == "fold_7_rgb": - from ..indian import fold_7_rgb as indian - from ..montgomery import fold_7_rgb as mc - from ..shenzhen import fold_7_rgb as ch - elif protocol == "fold_8_rgb": - from ..indian import fold_8_rgb as indian - from ..montgomery import fold_8_rgb as mc - from ..shenzhen import fold_8_rgb as ch - elif protocol == "fold_9_rgb": - from ..indian import fold_9_rgb as indian - from ..montgomery import fold_9_rgb as mc - from ..shenzhen import fold_9_rgb as ch - - mc = mc.dataset - ch = ch.dataset - indian = indian.dataset - - dataset = {} - dataset["__train__"] = ConcatDataset( - [mc["__train__"], ch["__train__"], indian["__train__"]] - ) - dataset["train"] = ConcatDataset( - [mc["train"], ch["train"], indian["train"]] - ) - dataset["__valid__"] = ConcatDataset( - [mc["__valid__"], ch["__valid__"], indian["__valid__"]] - ) - dataset["validation"] = ConcatDataset( - [mc["validation"], ch["validation"], indian["validation"]] - ) - dataset["test"] = ConcatDataset([mc["test"], ch["test"], indian["test"]]) - - return dataset diff --git a/src/ptbench/configs/datasets/mc_ch_in/default.py b/src/ptbench/configs/datasets/mc_ch_in/default.py deleted file mode 100644 index 8408ffb2..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/default.py +++ /dev/null @@ -1,9 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets.""" - -from . import _maker - -dataset = _maker("default") diff --git a/src/ptbench/configs/datasets/mc_ch_in/fold_0.py b/src/ptbench/configs/datasets/mc_ch_in/fold_0.py deleted file mode 100644 index 405bb426..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/fold_0.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets -(cross validation fold 0)""" - -from . import _maker - -dataset = _maker("fold_0") diff --git a/src/ptbench/configs/datasets/mc_ch_in/fold_0_rgb.py b/src/ptbench/configs/datasets/mc_ch_in/fold_0_rgb.py deleted file mode 100644 index 9ff3224a..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/fold_0_rgb.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets -(cross validation fold 0, RGB)""" - -from . import _maker - -dataset = _maker("fold_0_rgb") diff --git a/src/ptbench/configs/datasets/mc_ch_in/fold_1.py b/src/ptbench/configs/datasets/mc_ch_in/fold_1.py deleted file mode 100644 index 2d3c5fad..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/fold_1.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets -(cross validation fold 1)""" - -from . import _maker - -dataset = _maker("fold_1") diff --git a/src/ptbench/configs/datasets/mc_ch_in/fold_1_rgb.py b/src/ptbench/configs/datasets/mc_ch_in/fold_1_rgb.py deleted file mode 100644 index b478b75b..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/fold_1_rgb.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets -(cross validation fold 1, RGB)""" - -from . import _maker - -dataset = _maker("fold_1_rgb") diff --git a/src/ptbench/configs/datasets/mc_ch_in/fold_2.py b/src/ptbench/configs/datasets/mc_ch_in/fold_2.py deleted file mode 100644 index d726858c..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/fold_2.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets -(cross validation fold 2)""" - -from . import _maker - -dataset = _maker("fold_2") diff --git a/src/ptbench/configs/datasets/mc_ch_in/fold_2_rgb.py b/src/ptbench/configs/datasets/mc_ch_in/fold_2_rgb.py deleted file mode 100644 index 0cf81050..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/fold_2_rgb.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets -(cross validation fold 2, RGB)""" - -from . import _maker - -dataset = _maker("fold_2_rgb") diff --git a/src/ptbench/configs/datasets/mc_ch_in/fold_3.py b/src/ptbench/configs/datasets/mc_ch_in/fold_3.py deleted file mode 100644 index 92e1ac8d..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/fold_3.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets -(cross validation fold 3)""" - -from . import _maker - -dataset = _maker("fold_3") diff --git a/src/ptbench/configs/datasets/mc_ch_in/fold_3_rgb.py b/src/ptbench/configs/datasets/mc_ch_in/fold_3_rgb.py deleted file mode 100644 index 23651bb0..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/fold_3_rgb.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets -(cross validation fold 3, RGB)""" - -from . import _maker - -dataset = _maker("fold_3_rgb") diff --git a/src/ptbench/configs/datasets/mc_ch_in/fold_4.py b/src/ptbench/configs/datasets/mc_ch_in/fold_4.py deleted file mode 100644 index 6e3aaa3c..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/fold_4.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets -(cross validation fold 4)""" - -from . import _maker - -dataset = _maker("fold_4") diff --git a/src/ptbench/configs/datasets/mc_ch_in/fold_4_rgb.py b/src/ptbench/configs/datasets/mc_ch_in/fold_4_rgb.py deleted file mode 100644 index 9addb86a..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/fold_4_rgb.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets -(cross validation fold 4, RGB)""" - -from . import _maker - -dataset = _maker("fold_4_rgb") diff --git a/src/ptbench/configs/datasets/mc_ch_in/fold_5.py b/src/ptbench/configs/datasets/mc_ch_in/fold_5.py deleted file mode 100644 index edae2bae..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/fold_5.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets -(cross validation fold 5)""" - -from . import _maker - -dataset = _maker("fold_5") diff --git a/src/ptbench/configs/datasets/mc_ch_in/fold_5_rgb.py b/src/ptbench/configs/datasets/mc_ch_in/fold_5_rgb.py deleted file mode 100644 index 20a0b324..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/fold_5_rgb.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets -(cross validation fold 5, RGB)""" - -from . import _maker - -dataset = _maker("fold_5_rgb") diff --git a/src/ptbench/configs/datasets/mc_ch_in/fold_6.py b/src/ptbench/configs/datasets/mc_ch_in/fold_6.py deleted file mode 100644 index 5ae1c3cc..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/fold_6.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets -(cross validation fold 6)""" - -from . import _maker - -dataset = _maker("fold_6") diff --git a/src/ptbench/configs/datasets/mc_ch_in/fold_6_rgb.py b/src/ptbench/configs/datasets/mc_ch_in/fold_6_rgb.py deleted file mode 100644 index 874057b3..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/fold_6_rgb.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets -(cross validation fold 6, RGB)""" - -from . import _maker - -dataset = _maker("fold_6_rgb") diff --git a/src/ptbench/configs/datasets/mc_ch_in/fold_7.py b/src/ptbench/configs/datasets/mc_ch_in/fold_7.py deleted file mode 100644 index 5ab352c6..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/fold_7.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets -(cross validation fold 7)""" - -from . import _maker - -dataset = _maker("fold_7") diff --git a/src/ptbench/configs/datasets/mc_ch_in/fold_7_rgb.py b/src/ptbench/configs/datasets/mc_ch_in/fold_7_rgb.py deleted file mode 100644 index 5014ff5b..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/fold_7_rgb.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets -(cross validation fold 7, RGB)""" - -from . import _maker - -dataset = _maker("fold_7_rgb") diff --git a/src/ptbench/configs/datasets/mc_ch_in/fold_8.py b/src/ptbench/configs/datasets/mc_ch_in/fold_8.py deleted file mode 100644 index 49ec1c40..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/fold_8.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets -(cross validation fold 8)""" - -from . import _maker - -dataset = _maker("fold_8") diff --git a/src/ptbench/configs/datasets/mc_ch_in/fold_8_rgb.py b/src/ptbench/configs/datasets/mc_ch_in/fold_8_rgb.py deleted file mode 100644 index deb1e4a9..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/fold_8_rgb.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets -(cross validation fold 8, RGB)""" - -from . import _maker - -dataset = _maker("fold_8_rgb") diff --git a/src/ptbench/configs/datasets/mc_ch_in/fold_9.py b/src/ptbench/configs/datasets/mc_ch_in/fold_9.py deleted file mode 100644 index b701a9c8..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/fold_9.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets -(cross validation fold 9)""" - -from . import _maker - -dataset = _maker("fold_9") diff --git a/src/ptbench/configs/datasets/mc_ch_in/fold_9_rgb.py b/src/ptbench/configs/datasets/mc_ch_in/fold_9_rgb.py deleted file mode 100644 index a6b3b43b..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/fold_9_rgb.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian datasets -(cross validation fold 9, RGB)""" - -from . import _maker - -dataset = _maker("fold_9_rgb") diff --git a/src/ptbench/configs/datasets/mc_ch_in/rgb.py b/src/ptbench/configs/datasets/mc_ch_in/rgb.py deleted file mode 100644 index 5f0d4757..00000000 --- a/src/ptbench/configs/datasets/mc_ch_in/rgb.py +++ /dev/null @@ -1,10 +0,0 @@ -# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch> -# -# SPDX-License-Identifier: GPL-3.0-or-later - -"""Aggregated dataset composed of Montgomery, Shenzhen and Indian (RGB) -datasets.""" - -from . import _maker - -dataset = _maker("rgb") diff --git a/src/ptbench/data/mc_ch_in/__init__.py b/src/ptbench/data/mc_ch_in/__init__.py new file mode 100644 index 00000000..662d5c13 --- /dev/null +++ b/src/ptbench/data/mc_ch_in/__init__.py @@ -0,0 +1,3 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later diff --git a/src/ptbench/data/mc_ch_in/default.py b/src/ptbench/data/mc_ch_in/default.py new file mode 100644 index 00000000..7d2d6fc0 --- /dev/null +++ b/src/ptbench/data/mc_ch_in/default.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.default import datamodule as indian_datamodule +from ..montgomery.default import datamodule as mc_datamodule +from ..shenzhen.default import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/fold_0.py b/src/ptbench/data/mc_ch_in/fold_0.py new file mode 100644 index 00000000..66e9e07e --- /dev/null +++ b/src/ptbench/data/mc_ch_in/fold_0.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.fold_0 import datamodule as indian_datamodule +from ..montgomery.fold_0 import datamodule as mc_datamodule +from ..shenzhen.fold_0 import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/fold_0_rgb.py b/src/ptbench/data/mc_ch_in/fold_0_rgb.py new file mode 100644 index 00000000..bb4b7fc1 --- /dev/null +++ b/src/ptbench/data/mc_ch_in/fold_0_rgb.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.fold_0_rgb import datamodule as indian_datamodule +from ..montgomery.fold_0_rgb import datamodule as mc_datamodule +from ..shenzhen.fold_0_rgb import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/fold_1.py b/src/ptbench/data/mc_ch_in/fold_1.py new file mode 100644 index 00000000..d98c097e --- /dev/null +++ b/src/ptbench/data/mc_ch_in/fold_1.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.fold_1 import datamodule as indian_datamodule +from ..montgomery.fold_1 import datamodule as mc_datamodule +from ..shenzhen.fold_1 import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/fold_1_rgb.py b/src/ptbench/data/mc_ch_in/fold_1_rgb.py new file mode 100644 index 00000000..32a94a5d --- /dev/null +++ b/src/ptbench/data/mc_ch_in/fold_1_rgb.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.fold_1_rgb import datamodule as indian_datamodule +from ..montgomery.fold_1_rgb import datamodule as mc_datamodule +from ..shenzhen.fold_1_rgb import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/fold_2.py b/src/ptbench/data/mc_ch_in/fold_2.py new file mode 100644 index 00000000..15eaf1aa --- /dev/null +++ b/src/ptbench/data/mc_ch_in/fold_2.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.fold_2 import datamodule as indian_datamodule +from ..montgomery.fold_2 import datamodule as mc_datamodule +from ..shenzhen.fold_2 import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/fold_2_rgb.py b/src/ptbench/data/mc_ch_in/fold_2_rgb.py new file mode 100644 index 00000000..4582172f --- /dev/null +++ b/src/ptbench/data/mc_ch_in/fold_2_rgb.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.fold_2_rgb import datamodule as indian_datamodule +from ..montgomery.fold_2_rgb import datamodule as mc_datamodule +from ..shenzhen.fold_2_rgb import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/fold_3.py b/src/ptbench/data/mc_ch_in/fold_3.py new file mode 100644 index 00000000..54b8e1c5 --- /dev/null +++ b/src/ptbench/data/mc_ch_in/fold_3.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.fold_3 import datamodule as indian_datamodule +from ..montgomery.fold_3 import datamodule as mc_datamodule +from ..shenzhen.fold_3 import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/fold_3_rgb.py b/src/ptbench/data/mc_ch_in/fold_3_rgb.py new file mode 100644 index 00000000..bcc22dad --- /dev/null +++ b/src/ptbench/data/mc_ch_in/fold_3_rgb.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.fold_3_rgb import datamodule as indian_datamodule +from ..montgomery.fold_3_rgb import datamodule as mc_datamodule +from ..shenzhen.fold_3_rgb import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/fold_4.py b/src/ptbench/data/mc_ch_in/fold_4.py new file mode 100644 index 00000000..a3dde801 --- /dev/null +++ b/src/ptbench/data/mc_ch_in/fold_4.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.fold_4 import datamodule as indian_datamodule +from ..montgomery.fold_4 import datamodule as mc_datamodule +from ..shenzhen.fold_4 import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/fold_4_rgb.py b/src/ptbench/data/mc_ch_in/fold_4_rgb.py new file mode 100644 index 00000000..ee076ac0 --- /dev/null +++ b/src/ptbench/data/mc_ch_in/fold_4_rgb.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.fold_4_rgb import datamodule as indian_datamodule +from ..montgomery.fold_4_rgb import datamodule as mc_datamodule +from ..shenzhen.fold_4_rgb import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/fold_5.py b/src/ptbench/data/mc_ch_in/fold_5.py new file mode 100644 index 00000000..dcbf4fbb --- /dev/null +++ b/src/ptbench/data/mc_ch_in/fold_5.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.fold_5 import datamodule as indian_datamodule +from ..montgomery.fold_5 import datamodule as mc_datamodule +from ..shenzhen.fold_5 import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/fold_5_rgb.py b/src/ptbench/data/mc_ch_in/fold_5_rgb.py new file mode 100644 index 00000000..660037c6 --- /dev/null +++ b/src/ptbench/data/mc_ch_in/fold_5_rgb.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.fold_5_rgb import datamodule as indian_datamodule +from ..montgomery.fold_5_rgb import datamodule as mc_datamodule +from ..shenzhen.fold_5_rgb import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/fold_6.py b/src/ptbench/data/mc_ch_in/fold_6.py new file mode 100644 index 00000000..20a797cb --- /dev/null +++ b/src/ptbench/data/mc_ch_in/fold_6.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.fold_6 import datamodule as indian_datamodule +from ..montgomery.fold_6 import datamodule as mc_datamodule +from ..shenzhen.fold_6 import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/fold_6_rgb.py b/src/ptbench/data/mc_ch_in/fold_6_rgb.py new file mode 100644 index 00000000..a90cbfea --- /dev/null +++ b/src/ptbench/data/mc_ch_in/fold_6_rgb.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.fold_6_rgb import datamodule as indian_datamodule +from ..montgomery.fold_6_rgb import datamodule as mc_datamodule +from ..shenzhen.fold_6_rgb import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/fold_7.py b/src/ptbench/data/mc_ch_in/fold_7.py new file mode 100644 index 00000000..086f2503 --- /dev/null +++ b/src/ptbench/data/mc_ch_in/fold_7.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.fold_7 import datamodule as indian_datamodule +from ..montgomery.fold_7 import datamodule as mc_datamodule +from ..shenzhen.fold_7 import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/fold_7_rgb.py b/src/ptbench/data/mc_ch_in/fold_7_rgb.py new file mode 100644 index 00000000..b8efe821 --- /dev/null +++ b/src/ptbench/data/mc_ch_in/fold_7_rgb.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.fold_7_rgb import datamodule as indian_datamodule +from ..montgomery.fold_7_rgb import datamodule as mc_datamodule +from ..shenzhen.fold_7_rgb import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/fold_8.py b/src/ptbench/data/mc_ch_in/fold_8.py new file mode 100644 index 00000000..a02325aa --- /dev/null +++ b/src/ptbench/data/mc_ch_in/fold_8.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.fold_8 import datamodule as indian_datamodule +from ..montgomery.fold_8 import datamodule as mc_datamodule +from ..shenzhen.fold_8 import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/fold_8_rgb.py b/src/ptbench/data/mc_ch_in/fold_8_rgb.py new file mode 100644 index 00000000..190440f5 --- /dev/null +++ b/src/ptbench/data/mc_ch_in/fold_8_rgb.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.fold_8_rgb import datamodule as indian_datamodule +from ..montgomery.fold_8_rgb import datamodule as mc_datamodule +from ..shenzhen.fold_8_rgb import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/fold_9.py b/src/ptbench/data/mc_ch_in/fold_9.py new file mode 100644 index 00000000..bf14f21f --- /dev/null +++ b/src/ptbench/data/mc_ch_in/fold_9.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.fold_9 import datamodule as indian_datamodule +from ..montgomery.fold_9 import datamodule as mc_datamodule +from ..shenzhen.fold_9 import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/fold_9_rgb.py b/src/ptbench/data/mc_ch_in/fold_9_rgb.py new file mode 100644 index 00000000..7a7bc632 --- /dev/null +++ b/src/ptbench/data/mc_ch_in/fold_9_rgb.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.fold_9_rgb import datamodule as indian_datamodule +from ..montgomery.fold_9_rgb import datamodule as mc_datamodule +from ..shenzhen.fold_9_rgb import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule diff --git a/src/ptbench/data/mc_ch_in/rgb.py b/src/ptbench/data/mc_ch_in/rgb.py new file mode 100644 index 00000000..e10748b2 --- /dev/null +++ b/src/ptbench/data/mc_ch_in/rgb.py @@ -0,0 +1,81 @@ +# Copyright © 2022 Idiap Research Institute <contact@idiap.ch> +# +# SPDX-License-Identifier: GPL-3.0-or-later + +"""Aggregated dataset composed of Montgomery and Shenzhen datasets.""" + +from clapper.logging import setup +from torch.utils.data.dataset import ConcatDataset + +from .. import return_subsets +from ..base_datamodule import BaseDataModule, get_dataset_from_module +from ..indian.rgb import datamodule as indian_datamodule +from ..montgomery.rgb import datamodule as mc_datamodule +from ..shenzhen.rgb import datamodule as ch_datamodule + +logger = setup(__name__.split(".")[0], format="%(levelname)s: %(message)s") + + +class DefaultModule(BaseDataModule): + def __init__( + self, + train_batch_size=1, + predict_batch_size=1, + drop_incomplete_batch=False, + multiproc_kwargs=None, + ): + self.train_batch_size = train_batch_size + self.predict_batch_size = predict_batch_size + self.drop_incomplete_batch = drop_incomplete_batch + self.multiproc_kwargs = multiproc_kwargs + + super().__init__( + train_batch_size=train_batch_size, + predict_batch_size=predict_batch_size, + drop_incomplete_batch=drop_incomplete_batch, + multiproc_kwargs=multiproc_kwargs, + ) + + def setup(self, stage: str): + # Instantiate other datamodules and get their datasets + + module_args = { + "train_batch_size": self.train_batch_size, + "predict_batch_size": self.predict_batch_size, + "drop_incomplete_batch": self.drop_incomplete_batch, + "multiproc_kwargs": self.multiproc_kwargs, + } + + mc = get_dataset_from_module(mc_datamodule, stage, **module_args) + ch = get_dataset_from_module(ch_datamodule, stage, **module_args) + indian = get_dataset_from_module( + indian_datamodule, stage, **module_args + ) + + # Combine datasets + self.dataset = {} + self.dataset["__train__"] = ConcatDataset( + [mc["__train__"], ch["__train__"], indian["__train__"]] + ) + self.dataset["train"] = ConcatDataset( + [mc["train"], ch["train"], indian["train"]] + ) + self.dataset["__valid__"] = ConcatDataset( + [mc["__valid__"], ch["__valid__"], indian["__valid__"]] + ) + self.dataset["validation"] = ConcatDataset( + [mc["validation"], ch["validation"], indian["validation"]] + ) + self.dataset["test"] = ConcatDataset( + [mc["test"], ch["test"], indian["test"]] + ) + + ( + self.train_dataset, + self.validation_dataset, + self.extra_validation_datasets, + self.predict_dataset, + ) = return_subsets(self.dataset) + + +datamodule = DefaultModule -- GitLab